Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 195(1): 395-409, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38198215

RESUMO

Dwarfism is an important agronomic trait in fruit breeding programs. However, the germplasm resources required to generate dwarf pear (Pyrus spp.) varieties are limited. Moreover, the mechanisms underlying dwarfism remain unclear. In this study, "Yunnan" quince (Cydonia oblonga Mill.) had a dwarfing effect on "Zaosu" pear. Additionally, the dwarfism-related NAC transcription factor gene PbNAC71 was isolated from pear trees comprising "Zaosu" (scion) grafted onto "Yunnan" quince (rootstock). Transgenic Nicotiana benthamiana and pear OHF-333 (Pyrus communis) plants overexpressing PbNAC71 exhibited dwarfism, with a substantially smaller xylem and vessel area relative to the wild-type controls. Yeast one-hybrid, dual-luciferase, chromatin immunoprecipitation-qPCR, and electrophoretic mobility shift assays indicated that PbNAC71 downregulates PbWalls are thin 1 expression by binding to NAC-binding elements in its promoter. Yeast two-hybrid assays showed that PbNAC71 interacts with the E3 ubiquitin ligase PbRING finger protein 217 (PbRNF217). Furthermore, PbRNF217 promotes the ubiquitin-mediated degradation of PbNAC71 by the 26S proteasome, thereby regulating plant height as well as xylem and vessel development. Our findings reveal a mechanism underlying pear dwarfism and expand our understanding of the molecular basis of dwarfism in woody plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Pyrus , Fatores de Transcrição , Xilema , Xilema/metabolismo , Xilema/genética , Pyrus/genética , Pyrus/metabolismo , Pyrus/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/crescimento & desenvolvimento , Regiões Promotoras Genéticas/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética
2.
Plant Biotechnol J ; 21(8): 1560-1576, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37140026

RESUMO

RAD23 (RADIATION SENSITIVE23) proteins are a group of UBL-UBA (ubiquitin-like-ubiquitin-associated) proteins that shuttle ubiquitylated proteins to the 26S proteasome for breakdown. Drought stress is a major environmental constraint that limits plant growth and production, but whether RAD23 proteins are involved in this process is unclear. Here, we demonstrated that a shuttle protein, MdRAD23D1, mediated drought response in apple plants (Malus domestica). MdRAD23D1 levels increased under drought stress, and its suppression resulted in decreased stress tolerance in apple plants. Through in vitro and in vivo assays, we demonstrated that MdRAD23D1 interacted with a proline-rich protein MdPRP6, resulting in the degradation of MdPRP6 by the 26S proteasome. And MdRAD23D1 accelerated the degradation of MdPRP6 under drought stress. Suppression of MdPRP6 resulted in enhanced drought tolerance in apple plants, mainly because the free proline accumulation is changed. And the free proline is also involved in MdRAD23D1-mediated drought response. Taken together, these findings demonstrated that MdRAD23D1 and MdPRP6 oppositely regulated drought response. MdRAD23D1 levels increased under drought, accelerating the degradation of MdPRP6. MdPRP6 negatively regulated drought response, probably by regulating proline accumulation. Thus, "MdRAD23D1-MdPRP6" conferred drought stress tolerance in apple plants.


Assuntos
Malus , Ubiquitina , Ubiquitina/metabolismo , Proteínas de Transporte , Malus/genética , Proteínas de Plantas/genética , Secas , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Plantas Geneticamente Modificadas/metabolismo
3.
Plant Physiol ; 190(1): 305-318, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35674376

RESUMO

The ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) plays a central role in light-induced anthocyanin biosynthesis. However, the upstream regulatory factors of COP1 remain poorly understood, particularly in horticultural plants. Here, we identified an MdCOP1-interacting protein, BROAD-COMPLEX, TRAMTRACK AND BRIC A BRAC2 (MdBT2), in apple (Malus domestica). MdBT2 is a BTB protein that directly interacts with and stabilizes MdCOP1 by inhibiting self-ubiquitination. Fluorescence observation and cell fractionation assays showed that MdBT2 increased the abundance of MdCOP1 in the nucleus. Moreover, a series of phenotypic analyses indicated that MdBT2 promoted MdCOP1-mediated ubiquitination and degradation of the MdMYB1 transcription factor, inhibiting the expression of anthocyanin biosynthesis genes and anthocyanin accumulation. Overall, our findings reveal a molecular mechanism by which MdBT2 positively regulates MdCOP1, providing insight into MdCOP1-mediated anthocyanin biosynthesis.


Assuntos
Malus , Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitinação
4.
Biomolecules ; 10(2)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32054132

RESUMO

Anthocyanin contributes to the coloration of pear fruit and enhances plant defenses. Members of the ethylene response factor (ERF) family play vital roles in hormone and stress signaling and are involved in anthocyanin biosynthesis. Here, PbERF22 was identified from the lanolin-induced red fruit of 'Zaosu' pear (Pyrus bretschneideri Rehd.) using a comparative transcriptome analysis. Its expression level was up- and down-regulated by methyl jasmonate and 1-methylcyclopropene plus lanolin treatments, respectively, which indicated that PbERF22 responded to the jasmonate- and ethylene-signaling pathways. In addition, transiently overexpressed PbERF22 induced anthocyanin biosynthesis in 'Zaosu' fruit, and a quantitative PCR analysis further confirmed that PbERF22 facilitated the expression of anthocyanin biosynthetic structural and regulatory genes. Moreover, a dual luciferase assay showed that PbERF22 enhanced the activation effects of PbMYB10 and PbMYB10b on the PbUFGT promoter. Therefore, PbERF22 responses to jasmonate and ethylene signals and regulates anthocyanin biosynthesis. This provides a new perspective on the correlation between jasmonate-ethylene crosstalk and anthocyanin biosynthesis.


Assuntos
Acetatos/metabolismo , Antocianinas/biossíntese , Ciclopentanos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Etilenos/metabolismo , Lanolina/farmacologia , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Antocianinas/genética , Cor , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/genética , Frutas/efeitos dos fármacos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Reguladores/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Pyrus/genética , Pyrus/metabolismo , Transcriptoma/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
5.
Hortic Res ; 6: 66, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231524

RESUMO

The phytohormone abscisic acid (ABA) is a major element involved in apple (Malus domestica) production because of its role in seed germination and early seedling development. The WRKY family, which is one of the largest families of transcription factors, plays an important role in ABA signaling in plants. However, the underlying molecular mechanisms of WRKY-mediated ABA sensitivity in apple are poorly understood. A genome-wide transcriptome analysis indicated that MdWRKY31 is a key factor induced by ABA. Quantitative real-time PCR showed that MdWRKY31 is induced by ABA in response to PEG4000, which is used to simulate drought. As a transcription factor, MdWRKY31 is localized in the nucleus. Ectopic expression of MdWRKY31 in Arabidopsis and Nicotiana benthamiana enhanced plant sensitivity to ABA. Overexpression of MdWRKY31 in apple roots and apple calli increased sensitivity to ABA, whereas repression of MdWRKY31 reduced sensitivity to ABA in the roots of 'Royal Gala'. Electrophoretic mobility shift assays, chromatin immunoprecipitation PCR, and yeast one-hybrid assays indicated that MdWRKY31 directly binds to the promoter of MdRAV1. Expression analyses of transgenic apple calli containing MdWRKY31 and pMdRAV1::GUS implied that MdWRKY31 represses the expression of MdRAV1. We also found that MdRAV1 binds directly to the promoters of MdABI3 and MdABI4 and repressed their expression. Our findings reveal a new important regulatory mechanism of MdWRKY31-MdRAV1-MdABIs in the ABA signaling pathway in apple.

6.
PLoS One ; 9(3): e91945, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24637788

RESUMO

Flavonoid biosynthesis profile was clarified by fruit bagging and re-exposure treatments in the green Chinese pear 'Zaosu' (Pyrus bretschneideri Rehd.) and its red mutant 'Red Zaosu'. Two distinct biosynthesis patterns of flavonoid 3-glycosides were found in 'Zaosu' pear. By comparison with 'Red Zaosu', the biosynthesis of flavonoid 3-galactosides and flavonoid 3-arabinosides were inhibited by bagging and these compounds only re-accumulated to a small degree in the fruit peel of 'Zaosu' after the bags were removed. In contrast, the biosynthesis of flavonoid 3-gluctosides and flavonoid 3-rutinosides was reduced by bagging and then increased when the fruits were re-exposed to sunlight. A combination of correlation, multicollinearity test and partial-correlation analyses among major flavonoid metabolites indicated that biosynthesis of each phenolic compound was independent in 'Zaosu' pear, except for the positive correlation between flavonoid 3-rutincosides and flavanols. In contrast with the green pear cultivar, almost all phenolic compounds in the red mutant had similar biosynthesis patterns except for arbutin. However, only the biosynthesis of flavonoid 3-galactosides was relatively independent and strongly affected the synthesis of the other phenolic compounds. Therefore, we propose a hypothesis that the strong accumulation of flavonoid 3-galactosides stimulated the biosynthesis of other flavonoid compounds in the red mutant and, therefore, caused systemic variation of flavonoid biosynthesis profiles between 'Zaosu' and its red mutant. This hypothesis had been further demonstrated by the enzyme activity of UFGT, and transcript levels of flavonoid biosynthetic genes and been well tested by a stepwise linear regression forecasting model. The gene that encodes flavonoid 3-galacosyltransferase was also identified and isolated from the pear genome.


Assuntos
Flavonoides/metabolismo , Glicosídeos/biossíntese , Pyrus/metabolismo , Antocianinas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/genética , Redes e Vias Metabólicas , Fenóis/metabolismo , Fenótipo , Filogenia , Pigmentação , Pyrus/classificação , Pyrus/genética
7.
J Sci Food Agric ; 92(12): 2421-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22430615

RESUMO

BACKGROUND: Drought is a major environmental stress limiting plant growth, productivity, and survival worldwide. Rootstocks are widely used to enhance plants resistance to drought stresses. This study determined influence of rootstock on drought responses in 1-year-old 'Gale Gala' apple trees grafted onto Malus sieversii or M. hupehensis. RESULTS: Choice of rootstock resulted in differential response to drought stress. Specifically, M. sieversii caused less drought-induced reduction in relative growth rate, biomass accumulation, leaf area, leaf chlorophyll content, relative water content, photosynthesis rate and maximum chlorophyll fluorescence yield but greater increase in whole-plant water use efficiency compared to M. hupehensis. Secondly, compared with M. hupehensis, M. sieversii caused less drought-induced accumulation of reactive oxygen species but more increase in activities of antioxidant enzymes. In addition, xylem sap abscisic acid concentration was greater in trees grafted onto M. hupehensis than in those grafted onto M. sieversii under drought stress. CONCLUSION: 'Gale Gala' trees' response to drought stress was associated with the rootstock's genotype onto which it was grafted. Trees with M. sieversii as rootstock are more drought resistant than trees with M. hupehensis as rootstock, which suggests that M. sieversii can be widely used as rootstock in arid and semi-arid regions.


Assuntos
Adaptação Fisiológica/genética , Secas , Malus/fisiologia , Raízes de Plantas , Estresse Fisiológico/genética , Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Biomassa , Clorofila/química , Clorofila/metabolismo , Fluorescência , Malus/genética , Malus/crescimento & desenvolvimento , Fotossíntese/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie , Árvores , Água/fisiologia , Xilema/metabolismo
8.
Artigo em Chinês | MEDLINE | ID: mdl-15643086

RESUMO

The metabolism of reactive oxygen species in pear (Pyrus bretschneideri Rehd.) flower buds changes greatly during their natural dormancy in winter. The O(-.)(2) production rate increases rapidly during the period of dormancy, but decreases when dormancy finishes (Fig. 5). H(2)O(2) content goes up significantly at the early stage of dormancy, but afterwards falls gradually (Fig. 5). However, ascorbic acid (AsA) and reduced glutathione (GSH) contents show a different changing trend: descending at first and keeping at relatively low levels during the process of dormancy, but rising during breaking of dormancy (Fig. 4). The activities of superoxide dismutase (SOD), ascorbic peroxidase (APX) and glutathione reductase (GR) descend during the process of dormancy, but rise during breaking of dormancy, although at different rates for different enzymes (Figs. 1, 3). On the contrary, the activity of catalase (CAT) increases sharply at the beginning of dormancy, keeps at a stable high level during dormancy, and gradually decreases at the end of dormancy period (Fig. 2). The activity of peroxidase (POD) even keeps increasing during dormancy and breaking of dormancy (Fig. 1). The results show that the metabolism of reactive oxygen species has certain strong correlation with the natural dormancy of pear flower buds in winter.


Assuntos
Flores/fisiologia , Pyrus/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Flores/metabolismo , Glutationa/metabolismo , Peroxidase/metabolismo , Peroxidases/metabolismo , Pyrus/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...