Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124560, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843615

RESUMO

This work investigates the different charge transfer characteristics and excited state intramolecular proton transfer process (ESIPT) of 2'-aminochalcones derivatives carrying different electron-withdrawing groups. Four new molecules are designed in the experiment and named as 2c, 3c, 4c and 5c, respectively. (Dyes and Pigments, 2022, 202.) Based on these four molecules, the effect of substituents on the ESIPT process and the charge transfer process are discussed in detail in our work. According to the study of the related parameters at the hydrogen bond site, infrared vibration spectrum, interaction region indicator isosurface (IRI) and scatter plots, it is concluded that the hydrogen bond interaction is enhanced under photoexcitation, and the descending order of the excited state hydrogen bond strength is 3c > 5c > 4c > 2c. The hydrogen bond energy is calculated by atoms in moleculs (AIM) topological analysis and core-valence bifurcation (CVB) index. The potential energy curve reveals the ESIPT mechanism. Frontier molecular orbital and electron-hole analyses explain the reasons for the changes in the ESIPT process at the electronic level. In addition, the ionization potentials (IPa and IPv), affinity energies (EAa and EAv) and reorganization energies are calculated to evaluate the potential application value of organic molecules in material transport field.

2.
Phys Chem Chem Phys ; 26(4): 3424-3440, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38205563

RESUMO

The newly synthesized dye molecules TY6 and CXC22 were selected to explain the influence of anthracene and acetylene groups on the power conversion efficiency (PCE) of the molecules at the microscopic level. Theoretical simulation was carried out to understand the properties of the two molecules, including frontier molecular orbitals, absorption spectra, light absorption efficiency, intramolecular charge transfer (ICT), dye regeneration, I-V prediction, etc. The results suggest that for CXC22, adding an anthracene and acetylene group in the conjugate bridge greatly enhances the molecule's absorption wavelength and molar extinction coefficient; CXC22 also has significant advantages in the intramolecular charge transfer and comparatively better dye regeneration and electron injection. These parameters cause CXC22 to have a higher PCE. Subsequently, CXC22 and the chlorophyll molecule (CHL7) were selected for co-sensitization to regulate performance. The stable structure in the co-sensitization configuration was screened, and the absorption spectrum characteristics and charge transfer mechanisms were revealed for the co-sensitization system. The designed evaluation model predicted that the PCE of CO1 (the cosensitive system of CXC22 and TY6 in H-H configuration is referred to as CO1) could reach 16.78%. This work provides an idea for developing an efficient dye-sensitized solar cell system.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 121935, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36265305

RESUMO

Organic materials with Mechanofluorochromism (MFC) properties have potential application value. Phenothiazine derivatives are a class of substances with MFC properties that have been synthesized and reported in experiments (Dyes and Pigments 172 (2020) 107835). Dual fluorescence of a series of phenothiazine derivatives is observed in the experiment, which proved that the ESIPT process is carried out. In this work, we choose phenothiazine derivatives (C2PAHN, C4PAHN, C8PAHN) as models to theoretically analyze the influence of different alkyl chain lengths on the excited state intramolecular proton transfer (ESIPT). In addition, the shift value of fluorescence spectrum is related to the length of alkyl chain. The fluorescence shift of C2PAHN is the largest (6.31 nm), and that of C8PAHN is the smallest (2.40 nm). The theory of density functional theory (DFT) and time-dependent density functional theory (TD-DFT) are adopted to simulate the molecular dynamics in the ground state and excited state. The analysis of the optimized molecular geometry parameters and infrared vibrational spectroscopy (IR) illustrate the stronger hydrogen bonding of the excited state molecules, which is favorable for the progress of ESIPT. Fluorescence spectroscopy reveals that the appropriate increase or decrease of alkyl chains would change the photophysical properties of the molecules. Frontier molecular orbitals (FMOs) indicate that the rearrangement of electron density from electronic level to is the driving force of the ESIPT process. Reduction density gradient (RDG) surfaces and Natural Population Analysis (NPA) tentatively lead to the conclusion that alkyl chain length is inversely proportional to hydrogen bond strength. Finally, the data are qualitatively analyzed by scanning the potential energy curves, and it is concluded that the longer the alkyl chain, the weaker the hydrogen bonding effect and the more unfavorable the ESIPT process.


Assuntos
Compostos Heterocíclicos , Prótons , Ligação de Hidrogênio , Teoria Quântica , Modelos Moleculares , Fenotiazinas
4.
Phys Chem Chem Phys ; 23(47): 27042-27058, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34847208

RESUMO

To explore high efficiency dye-sensitized solar cells (DSSCs), two experimentally derived (single fence and double fence porphyrins) and two theoretically designed zinc porphyrin molecules with D-D-π-A-A configurations were studied. Density functional theory and time-dependent density functional theory were employed to simulate these two experimental dyes and dye@TiO2 systems to understand why the double fence porphyrin molecule exhibits better photovoltaic performance than the single fence porphyrin molecule. For the short-circuit current (JSC), the various parameters that affected the experimental magnitude of JSC were analyzed from different aspects of absorption, charge transfer and chemical parameters as well as an electron injection process. The almost equal open-circuit voltages (VOC) in the experiment were predicted by theoretical VOC calculations. Our model predicted power conversion efficiencies (PCEs) of 1.993% and 10.866% for the single and double fence molecules, respectively, which are in accordance with the experimental values of 3.48% and 10.69%, respectively. In addition, one designed two new molecules based on the double fence porphyrin molecule with a 2-methyl-2H-benzo[d][1,2,3]triazole (BTA) unit bearing one fluorine and two fluorine atoms as the guest acceptor, respectively. Compared to the original molecules, the engineered molecules significantly improved the photovoltaic parameters, JSC and VOC, thereby causing excellent PCEs. The most outstanding designed molecule reached a PCE of 12.155%, and is considered a candidate dye for high-efficiency DSSC. This study provides insights into the photoelectric properties of single and double fence porphyrins. It also demonstrated that the strong electron-withdrawing ability of fluorine atoms would enhance the photovoltaic performance and provide a guideline for the further design of double fence porphyrins.

5.
J Phys Chem A ; 125(25): 5490-5498, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34137628

RESUMO

A full three-dimensional global potential energy surface (PES), covering the whole configuration space, is reported first for the title system by fitting high-level ab initio energies at the multireference configuration interaction level with the aug-cc-pV6Z basis set. In this work, the many-body expansion method is invoked to fit the innate character of the CH2+(12A″) PES. The topographical features are examined in detail based on the new global PES and in accordance with the other calculations from the ab initio energies, which show the correct behavior at the C+(2P) + H2(X1Σg+) and CH+(a3Π) + H(2S) dissociation limits. Using a time-dependent wave packet method, we provide insights into the dynamics behavior for reaction of C+(2P) + H2(X1Σg+) → CH+(a3Π) + H(2S). The integral cross sections and reaction probabilities increase monotonically in terms of the collision energy.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 250: 119375, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33421666

RESUMO

Substituent effects on excited-state intramolecular proton transfer (ESIPT) and photophysical properties of 2-(2-Hydroxyphenyl) benzothiazole (HBT) derivatives have been theoretically unveiled via the density functional theory (DFT) and time-dependent DFT (TDDFT). The optimized geometrical configurations and normal mode analyses confirm that the proton transfer processes are more reactive in excited state. Through calculating the activation energies and rate constants of ESIPT processes, finding that the processes are increasingly inactive when substituent group changes from -CN, -CO2Me, -Cl, -Me, -NMe2 to -NO2. In addition, the photophysical properties analyses indicate the vertical transition energies are in good agreement with those observed in experiment. Note that all the absorption and emission maxima of enol and keto forms have the significant red-shift. In order to clarify the substituent effect on ESIPT and photophysical properties, we draw the frontier molecular orbitals (FMOs) isosurfaces and calculate the distances of electrons and holes and atomic charges. It follows that the intramolecular charge transfer (ICT) degrees are increasingly enlarged as substituting from -CN, -CO2Me, -Cl, -Me, -NMe2 to -NO2 groups, which not only causes the red-shift of absorption and emission of enol and keto forms, but also affects the charge distribution of proton donor and acceptor, inhibiting the occurrence of ESIPT processes.

7.
J Phys Chem A ; 125(3): 777-794, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33433218

RESUMO

To investigate the effect of polymerization (n = 1, 2, 3, and 4) on the charge-transfer (CT) mechanisms in the one (two)-photon absorption (OPA and TPA) process of D-A-type triphenylamine derivatives, charge density difference is used to graphically represent the CT characteristics. A transition density matrix is utilized to reveal the direction of CT on different groups quantitatively. With the n increasing, electrons are mainly transferred between the groups in the middle position of the molecular chain during OPA and TPA processes. Simulated results show that the energy gap and excitation energy have a good linear relationship with the reciprocal of the polymerization degree. Importantly, the polymerization effect can effectively increase the electronic transmission capability, TPA performance, and second hyperpolarizability. Besides, the simplified sum over state model reveals the variation factor of the TPA cross-section and the second static hyperpolarizability. The McRae formula and Bakhshiev formula are used to estimate the difference of dipole moments, which is an important parameter of the second hyperpolarizability. The comprehensive analysis of the nonlinear optical (NLO) parameters of triphenylamine derivatives can provide some significant guidance for molecular design and improve the NLO performance of D-A molecular materials. Also, the thermodynamic parameters can provide some theoretical supports for solving practical problems.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 245: 118897, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937267

RESUMO

To further improve the pyrenyl-contained derivatives two-photon absorption (TPA) and third-order nonlinear optical (NLO) properties, three steps of optimization are employed based on experimental molecule PCVS-B: heteroatomic substitution, exchanging the position of double bonds and adding a branch. The contributions of π electrons to localized orbital locators and Mayer bond orders (LOL-π and IABπ) show that the second step can enhance the chemical interaction between pyrenyl and the branched-chain. Two visual methods of charge density difference (CDD) and transition density matrix (TDM) are combined to intuitively analyze the intramolecular charge transfer (ICT) process of one (two) photon absorption; results show that both following two steps can increase the degree of ICT on the conjugated plane of the pyrenyl. The sum over state (SOS) model was used to find out the dominant two-photon transition process. The difference between the dipole moments obtained by the McRae equation is applied to the three-state model, revealing the inherent law of the second static hyperpolarizability.

9.
Phys Chem Chem Phys ; 22(11): 6391-6400, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32142089

RESUMO

The main goal of this work is to investigate the effects of a graphene layer between the photosensitive layer and semiconductor substrates on the electron transport performance of dye-sensitized solar cells from the perspective of intramolecular arrangement and interfaces. The benzothiadiazole sensitizer YKP-88 is used as the photosensitive layer and the influence of the graphene layer on the short-circuit current density (Jsc) and open-circuit voltage (Voc) is also discussed by exploring the frontier molecular orbitals, intramolecular charge transfer, weak interaction, interfacial electron dynamic propagations and other microscopic parameters after the anchoring of the graphene layer. The results demonstrate that the graphene layer can accelerate the electron injection of dye molecules into the semiconductor substrate, which not only has a qualitative reduction in injection time, but also has a qualitative change in the increase of the injection amount. In addition, it is also found that the graphene layer increases the stereoscopic effect, the absorption of long wavelength (>700 nm) photon flu and the amount of electron injection into the photoanode, which benefits the intramolecular charge transfer and increases the Jsc and Voc of solar cells. The combination of intermolecular and interfacial perspectives indicates that the appropriate configuration of graphene layers can effectively improve the photoelectric conversion efficiency of dye-sensitized solar cells.

10.
J Phys Chem A ; 123(34): 7401-7407, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31369271

RESUMO

The main purpose of this work is to explore the effect of graphene quantum dots (GR) filling the photosensitive layer. The multibranched dye JH-1 as the photoactive layer material was used to analyze the non-negligible role of graphene quantum dots from the perspectives of optimized structure, electrochemical parameters, optical properties, nonlinear optical (NLO) switch, and external electric field. The results demonstrated that the graphene quantum dots not only improve the optical properties of solar cells but also control the electron transfer in the photosensitive layer molecules under the manipulation of a specific external electric field. When the external electric field intensity is below 20 × 10-4 au, the excess electron orbital does not change. When the external electric field reaches 25 × 10-4 au, the excess electron orbital on the graphene quantum dots evolves. This discovery allows the electron transfer from the photosensitive layer, which should be controlled by the NLO switch. In addition, the optical properties of sensitizers showed regular evolution in the external electric field, which provides an effective way to improve the performance. Comprehensive analysis indicated that the doping of graphene quantum dots with the photosensitive layer can be used as a new way to improve the photoelectric conversion efficiency of solar cells.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 218: 142-154, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30978574

RESUMO

The three organic dye molecules (JY31, JY32 and JY33) were applied to the photoactive layer in solar cells. Photophysical and photochemical characteristic have been investigated with natural bond orbital (NBO), frontier molecular orbital, ionization potentials, electron affinities, absorption properties, reorganization energies, static first hyperpolarizability, emission characteristics, IR spectra, charge density difference; the influence of alkyl chains and 4-butoxyphenyl on properties were revealed; Subsequently, three new molecules JY33-1, JY33-2 and JY33-3 were designed by inserting the electron withdrawing group -CN into the acceptor part of JY33 in order to understand molecular engineering mechanism. The results show that the three original molecules have relatively high molar extinction coefficients, and the molecule of JY33 with a 4-butoxyphenyl group enables a bathochromic shift in absorption spectrum and is beneficial to improve the hole transport, injection capacity and ICT properties as well as better energy levels matching. The current study provides an effective channel for manipulating performance in materials design of solar cells.

12.
Sci Rep ; 8(1): 10089, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973632

RESUMO

Two series of novel dyes were designed based on the multipolar structures of the red dye D35 and blue dye DB, by introducing the furan (F), benzene ring (B) and benzo[c]thiophene (BT) groups into the conjugated bridge of D35 in proper order and adjusting the position of diketopyrrolopyrrole(DPP) unit and the incorporation of fluorine in the conjugated bridge of DB, respectively. We performed the quantum chemistry calculation to investigate the ground state and excited properties in a direct correlation with the spectra properties and abilities of losing or accepting electron for the original and designed molecules. Furthermore, the absorption spectra characteristics in consideration of the aggregation of dyes on the TiO2 layer and intermolecular charge transfer rate of the dimers were calculated. The obtained results indicate that the larger intermolecular charge transfer rate leads to the poor photoelectrical properties of the dyes, and the designed dyes D35-3 and DB-2 would exhibit the best photoelectrical properties among the investigated dyes due to their lower energy gaps, widened absorption spectra and prominent charge transfer properties.

13.
J Phys Chem A ; 122(24): 5409-5417, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29863355

RESUMO

The photodeamination reaction of the anthrol molecule generating the high-activity quinone methide intermediate has been investigated ( J. Org. Chem. 2017 , 82 , 6006 - 6021 ), though lacking careful explanation for its reaction mechanism. In our research, the mechanism of the anthrol molecule photodeamination induced by excited-state intramolecular proton transfer was reported for the first time. Absorption and emission spectra calculated for the work presented here agreed well with experimental results. To propose a molecular-level explanation of the photodeamination reaction, we calculated bond parameters, corresponding infrared vibrational frequencies, Mayer bond orders, and visualized frontier molecular orbitals of different molecules, and the hydrogen bond strengthening behavior in excited states was confirmed, enhancing the excited state intramolecular proton transfer of the anthrol molecule. Moreover, we concluded that photoisomerization weakened the bond strength between nitrogen and carbon atoms, which promoted the photodeamination reaction. Finally, for visually and quantificationally revealing the photodeamination mechanism, we have established the three-dimensional potential energy surfaces for the deamination reaction in different electronic states and calculated the corresponding reaction Gibbs free energies, it can be confirmed that the photodeamination reaction of the anthrol molecule must be induced by a proton transfer reaction in the excited state.

14.
Nanotechnology ; 29(14): 145202, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29388921

RESUMO

The energy band theory of a classical semiconductor can qualitatively explain the charge-transfer process in low-dimensional hybrid colloidal quantum dot (QD)-graphene (GR) materials; however, the definite charge-transfer channels are not clear. Using density functional theory (DFT) and time-dependent DFT, we simulate the hybrid QD-GR nanostructure, and by constructing its orbital interaction diagram, we show the quantitative coupling characteristics of the molecular orbitals (MOs) of the hybrid structure. The main MOs are derived from the fragment MOs (FOs) of GR, and the Cd13Se13 QD FOs merge with the GR FOs in a certain proportion to afford the hybrid system. Upon photoexcitation, electrons in the GR FOs jump to the QD FOs, leaving holes in the GR FOs, and the definite charge-transfer channels can be found by analyzing the complex MOs coupling. The excited electrons and remaining holes can also be localized in the GR or the QD or transfer between the QD and GR with different absorption energies. The charge-transfer process for the selected excited states of the hybrid QD-GR structure are testified by the charge difference density isosurface. The natural transition orbitals, charge-transfer length analysis and 2D site representation of the transition density matrix also verify the electron-hole delocalization, localization, or coherence chacracteristics of the selected excited states. Therefore, our research enhances understanding of the coupling mechanism of low-dimensional hybrid materials and will aid in the design and manipulation of hybrid photoelectric devices for practical application in many fields.

15.
Chem Rec ; 18(5): 481-490, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29044977

RESUMO

In this review, we firstly reveal the physical principle of plasmon-exciton coupling interaction with steady absorption spectroscopy, and ultrafast transition absorption spectroscopy, based on the pump-prop technology. Secondly, we introduce the fabrication of electro-optical device of two-dimensional semiconductor-nanostructure noble metals hybrid, based on the plasmon-exciton coupling interactions. Thirdly, we introduce the applications of plasmon-exciton coupling interaction in the field of surface catalytic reactions. Lastly, the perspective of plasmon-exciton coupling interaction and applications closed this review.

16.
Nat Commun ; 8(1): 394, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855521

RESUMO

The discovery of monolayer superconductors bears consequences for both fundamental physics and device applications. Currently, the growth of superconducting monolayers can only occur under ultrahigh vacuum and on specific lattice-matched or dangling bond-free substrates, to minimize environment- and substrate-induced disorders/defects. Such severe growth requirements limit the exploration of novel two-dimensional superconductivity and related nanodevices. Here we demonstrate the experimental realization of superconductivity in a chemical vapour deposition grown monolayer material-NbSe2. Atomic-resolution scanning transmission electron microscope imaging reveals the atomic structure of the intrinsic point defects and grain boundaries in monolayer NbSe2, and confirms the low defect concentration in our high-quality film, which is the key to two-dimensional superconductivity. By using monolayer chemical vapour deposited graphene as a protective capping layer, thickness-dependent superconducting properties are observed in as-grown NbSe2 with a transition temperature increasing from 1.0 K in monolayer to 4.56 K in 10-layer.Two-dimensional superconductors will likely have applications not only in devices, but also in the study of fundamental physics. Here, Wang et al. demonstrate the CVD growth of superconducting NbSe2 on a variety of substrates, making these novel materials increasingly accessible.

17.
Phys Chem Chem Phys ; 19(24): 16105-16112, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28598467

RESUMO

In this work, vibration-resolved photoinduced electron transfer of an organic conjugated DA system subjected to an external electric field was theoretically investigated. The ground and excited state vibrational relaxation energies were quantitatively characterized. The effective high frequency, ωeff, could be estimated from the variation in energy of the excited-state equilibrium geometries of acceptor and donor sites as well as the analysis of the vibrational modes upon electron transfer. For a PCDTBT:PC70BM blend in an external electric field, the vibronic modes affected the charge separation process differently from the charge recombination process. The simulated results indicated that the vibrational quantum tunneling effect facilitated the charge recombination process to a large extent. Thus, for electron transfer reactions, considering the vibrational excitation influence and perturbed nucleus-electron interactions is essential. These results provide a feasible way to enhance the efficiency in yielding the electron transfer process products.

18.
Sci Rep ; 7(1): 417, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28341858

RESUMO

The mechanisms of the weak interactions within hybrid materials such as quantum dot (QD) and graphene (GR) have important implications for the design of related optoelectronic devices. We characterize the weak interactions in hybrid QD-GR systems using a non-covalent interactions approach. For a single Cd13Se13 QD with a core-cage structure, the intensity of the steric repulsive strain in every Cd-Se spatial four-atom ring of the cage surface is stronger than that of the inter-core-cage structure. Van der Waals (vdW) interactions occur within the cavity of the cage and within the six-atom rings of the cage surface. The spatial repulsion strain and attractive interactions play a key role in stabilizing the structure of the monolayer graphene. Interestingly, the spatial six-atom ring of the single QD change into spatial four-atom rings of the QD in the hybrid system, accompanied by the translation of vdW interactions into steric repulsive interactions. We conclude that the vdW interactions with π extensions and the weak attractive interactions within local areas between the QD and graphene together stabilize the integral structure of the hybrid QD-GR system. These results explain of the formation mechanism and the stabilization of the components in QD-GR hybrid materials.

19.
Sci Rep ; 7: 45688, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28349977

RESUMO

Three benzimidazole-based organic dyes, possessing the same triphenylamine donors and cyanoacrylic acid acceptors with the bithiophene π-bridges combined in different nuclear positions of benzimidazole, were investigated in the utility of dye-sensitizer solar cells. The structure, molecular orbital and energy, absorption spectra and some important parameters (such as light harvesting efficiency (LHE), electron injection driving force, the electron injection time, chemical reactivity parameters, vertical dipole moment as well as interaction models of dye-I2) were obtained according to Newns-Anderson model and DFT calculation. The process and strength of charge transfer and separation were visualized with charge different density and index of spatial extent (S, D and Δq). Current work paid attention to the new T-shaped dyes to reveal the relation between the structure and photoelectric performance. Furthermore, nine dyes (substitution of alkyl chains and π-bridges) have been designed and characterized to screen promising sensitizer candidates with excellent photo-electronic properties.

20.
Polymers (Basel) ; 9(12)2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965992

RESUMO

The development of non-fullerene small molecule as electron acceptors is critical for overcoming the shortcomings of fullerene and its derivatives (such as limited absorption of light, poor morphological stability and high cost). We investigated the electronic and optical properties of the two selected promising non-fullerene acceptors (NFAs), IDIC and IDTBR, and five conjugated donor polymers using quantum-chemical method (QM). Based on the optimized structures of the studied NFAs and the polymers, the ten donor/acceptor (D/A) interfaces were constructed and investigated using QM and Marcus semi-classical model. Firstly, for the two NFAs, IDTBR displays better electron transport capability, better optical absorption ability, and much greater electron mobility than IDIC. Secondly, the configurations of D/A yield the more bathochromic-shifted and broader sunlight absorption spectra than the single moiety. Surprisingly, although IDTBR has better optical properties than IDIC, the IDIC-based interfaces possess better electron injection abilities, optical absorption properties, smaller exciton binding energies and more effective electronic separation than the IDTBR-based interfaces. Finally, all the polymer/IDIC interfaces exhibit large charge separation rate (KCS) (up to 1012⁻1014 s-1) and low charge recombination rate (KCR) (<106 s-1), which are more likely to result in high power conversion efficiencies (PCEs). From above analysis, it was found that the polymer/IDIC interfaces should display better performance in the utility of bulk-heterojunction solar cells (BHJ OSC) than polymer/IDTBR interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...