Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1392450, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803376

RESUMO

Porcine epidemic diarrhea (PED) is a highly contagious intestinal infection primarily affecting pigs. It is caused by the porcine epidemic diarrhea virus (PEDV). PEDV targets the villus tissue cells in the small intestine and mesenteric lymph nodes, resulting in shortened intestinal villi and, in extreme cases, causing necrosis of the intestinal lining. Moreover, PEDV infection can disrupt the balance of the intestinal microflora, leading to an overgrowth of harmful bacteria like Escherichia coli. Exosomes, tiny membrane vesicles ranging from 30 to 150 nm in size, contain a complex mixture of RNA and proteins. MicroRNA (miRNA) regulates various cell signaling, development, and disease progression processes. This study extracted exosomes from both groups and performed high-throughput miRNA sequencing and bioinformatics techniques to investigate differences in miRNA expression within exosomes isolated from PEDV-infected porcine small intestine tissue compared to healthy controls. Notably, two miRNA types displayed upregulation in infected exosomes, while 12 exhibited downregulation. These findings unveil abnormal miRNA regulation patterns in PEDV-infected intestinal exosomes, shedding light on the intricate interplay between PEDV and its host. This will enable further exploration of the relationship between these miRNA changes and signaling pathways, enlightening PEDV pathogenesis and potential therapeutic targets.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37589785

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea diseases in piglets, which has brought huge economic losses to the pig industry. As the dominant Lactobacillus species in the piglet intestine, the antiviral effect of Limosilactobacillus reuteri (L. reuteri) has been reported. Nine L. reuteri strains were isolated and identified from swine feces in this study. The CCK-8 assay examined the anti-PEDV potential of their cell-free supernatant (CFS). Among the nine L. reuteri isolates examined, LRC8 had a higher inhibition rate to PEDV than the other strains. Thus, the biological properties of the LRC8 strain, such as growth ability, acid production ability, acid and bile salt tolerance, and adhesion to IPEC-J2 cells, were evaluated. Besides, the anti-PEDV activity of LRC8-CFS (LRC8 metabolites, LRM) was assessed using plaque reduction assays, indirect immunofluorescence assays, RT-qPCR, and western blotting. The mRNA relative expression levels of inflammatory factors including IL-1ß, IL-6, IL-8, MCP1, and TNF-α were determined by RT-qPCR. The results showed that the LRC8 strain grew well, was resistant to acid, tolerated bile salts, and adhered strongly to IPEC-J2 cells. In addition, treatment with its CFS (LRM) dramatically downregulated the mRNA expression levels of inflammatory cytokines, and in the Vero cell culture, prophylactic, therapeutic, competitive, and direct-inhibitory actions were seen against PEDV. Finally, we explored the anti-PEDV effects of the LRC8 strain in piglets and found that the LRC8 strain effectively relieved the clinical symptoms and intestinal damage of piglets infected by PEDV. To sum up, we found a L. reuteri strain with an anti-PEDV effect.

3.
Anal Biochem ; 662: 115013, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493864

RESUMO

This study developed a novel, ultrasensitive sandwich-type electrochemical immunosensor for detecting the porcine epidemic diarrhea virus (PEDV). By electrochemical co-deposition of graphene and Prussian blue, a Prussian blue-reduced graphene oxide-modified glassy carbon electrode was made, further modified with PEDV-monoclonal antibodies (mAbs) to create a new PEDV immunosensor using the double antibody sandwich technique. The electrochemical characteristics of several modified electrodes were investigated using cyclic voltammetry (CV). We optimized the pH levels and scan rate. Additionally, we examined specificity, reproducibility, repeatability, accuracy, and stability. The study indicates that the immunosensor has good performance in the concentration range of 1 × 101.88 to 1 × 105.38 TCID50/mL of PEDV, with a detection limit of 1 × 101.93 TCID50/mL at a signal-to-noise ratio of 3σ. The composite membranes produced via co-deposition of graphene and Prussian blue effectively increased electron transport to the glassy carbon electrode, boosted response signals, and increased the sensitivity, specificity, and stability of the immunosensor. The immunosensor could accurately detect PEDV, with results comparable to real-time quantitative PCR. This technique was applied to PEDV detection and served as a model for developing additional immunosensors for detecting hazardous chemicals and pathogenic microbes.


Assuntos
Técnicas Biossensoriais , Grafite , Vírus da Diarreia Epidêmica Suína , Animais , Suínos , Carbono , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Reprodutibilidade dos Testes , Imunoensaio/métodos , Eletrodos , Limite de Detecção , Ouro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA