Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Prev Med Public Health ; 48(3): 132-41, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26081650

RESUMO

OBJECTIVES: With recent advances in nanoparticle manufacturing and applications, potential exposure to nanoparticles in various settings is becoming increasing likely. No investigation has yet been performed to assess whether respiratory tract exposure to cerium oxide (CeO2) nanoparticles is associated with alterations in protein signaling, inflammation, and apoptosis in rat lungs. METHODS: Specific-pathogen-free male Sprague-Dawley rats were instilled with either vehicle (saline) or CeO2 nanoparticles at a dosage of 7.0 mg/kg and euthanized 1, 3, 14, 28, 56, or 90 days after exposure. Lung tissues were collected and evaluated for the expression of proteins associated with inflammation and cellular apoptosis. RESULTS: No change in lung weight was detected over the course of the study; however, cerium accumulation in the lungs, gross histological changes, an increased Bax to Bcl-2 ratio, elevated cleaved caspase-3 protein levels, increased phosphorylation of p38 MAPK, and diminished phosphorylation of ERK-1/2-MAPK were detected after CeO2 instillation (p<0.05). CONCLUSIONS: Taken together, these data suggest that high-dose respiratory exposure to CeO2 nanoparticles is associated with lung inflammation, the activation of signaling protein kinases, and cellular apoptosis, which may be indicative of a long-term localized inflammatory response.


Assuntos
Apoptose/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Caspase 3/metabolismo , Cério/química , Inflamação , Pulmão/metabolismo , Pulmão/patologia , Masculino , Nanopartículas Metálicas/química , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína X Associada a bcl-2/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Biomaterials ; 35(37): 9951-9962, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25224369

RESUMO

Cerium oxide (CeO2) nanoparticles have been posited to exhibit potent anti-oxidant activity which may allow for the use of these materials in biomedical applications. Herein, we investigate whether CeO2 nanoparticle administration can diminish right ventricular (RV) hypertrophy following four weeks of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH). Male Sprague Dawley rats were randomly divided into three groups: control, MCT only (60 mg/kg), or MCT + CeO2 nanoparticle treatment (60 mg/kg; 0.1 mg/kg). Compared to the control group, the RV weight to body weight ratio was 45% and 22% higher in the MCT and MCT + CeO2 groups, respectively (p < 0.05). Doppler echocardiography demonstrated that CeO2 nanoparticle treatment attenuated monocrotaline-induced changes in pulmonary flow and RV wall thickness. Paralleling these changes in cardiac function, CeO2 nanoparticle treatment also diminished MCT-induced increases in right ventricular (RV) cardiomyocyte cross sectional area, ß-myosin heavy chain, fibronectin expression, protein nitrosylation, protein carbonylation and cardiac superoxide levels. These changes with treatment were accompanied by a decrease in the ratio of Bax/Bcl2, diminished caspase-3 activation and reduction in serum inflammatory markers. Taken together, these data suggest that CeO2 nanoparticle administration may attenuate the hypertrophic response of the heart following PAH.


Assuntos
Antioxidantes/uso terapêutico , Cério/uso terapêutico , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/complicações , Hipertrofia Ventricular Direita/tratamento farmacológico , Hipertrofia Ventricular Direita/etiologia , Nanopartículas/uso terapêutico , Animais , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Hipertrofia Ventricular Direita/patologia , Masculino , Monocrotalina , Nanopartículas/ultraestrutura , Ratos , Ratos Sprague-Dawley
3.
Toxicol Appl Pharmacol ; 278(2): 135-47, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24793434

RESUMO

Cerium compounds have been used as a fuel-borne catalyst to lower the generation of diesel exhaust particles (DEPs), but are emitted as cerium oxide nanoparticles (CeO2) along with DEP in the diesel exhaust. The present study investigates the effects of the combined exposure to DEP and CeO2 on the pulmonary system in a rat model. Specific pathogen-free male Sprague-Dawley rats were exposed to CeO2 and/or DEP via a single intratracheal instillation and were sacrificed at various time points post-exposure. This investigation demonstrated that CeO2 induces a sustained inflammatory response, whereas DEP elicits a switch of the pulmonary immune response from Th1 to Th2. Both CeO2 and DEP activated AM and lymphocyte secretion of the proinflammatory cytokines IL-12 and IFN-γ, respectively. However, only DEP enhanced the anti-inflammatory cytokine IL-10 production in response to ex vivo LPS or Concanavalin A challenge that was not affected by the presence of CeO2, suggesting that DEP suppresses host defense capability by inducing the Th2 immunity. The micrographs of lymph nodes show that the particle clumps in DEP+CeO2 were significantly larger than CeO2 or DEP, exhibiting dense clumps continuous throughout the lymph nodes. Morphometric analysis demonstrates that the localization of collagen in the lung tissue after DEP+CeO2 reflects the combination of DEP-exposure plus CeO2-exposure. At 4 weeks post-exposure, the histological features demonstrated that CeO2 induced lung phospholipidosis and fibrosis. DEP induced lung granulomas that were not significantly affected by the presence of CeO2 in the combined exposure. Using CeO2 as diesel fuel catalyst may cause health concerns.


Assuntos
Cério/toxicidade , Exposição por Inalação/efeitos adversos , Nanopartículas/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Emissões de Veículos/toxicidade , Animais , Cério/análise , Interações Medicamentosas , Masculino , Nanopartículas/análise , Material Particulado/análise , Material Particulado/toxicidade , Ratos , Ratos Sprague-Dawley , Emissões de Veículos/análise
4.
Toxicol Appl Pharmacol ; 262(3): 255-64, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22613087

RESUMO

Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust particles, but are emitted as cerium oxide (CeO(2)) nanoparticles in the diesel exhaust. In a previous study, we have demonstrated a wide range of CeO(2)-induced lung responses including sustained pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, we investigated the fibrogenic responses induced by CeO(2) in a rat model at various time points up to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO(2) by a single intratracheal instillation. Alveolar macrophages (AM) were isolated by bronchial alveolar lavage (BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-ß1 in the fibrotic process were investigated. The results showed that CeO(2) exposure significantly increased fibrotic cytokine TGF-ß1 and OPN production by AM above controls. The collagen degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after exposure, but remained much higher than the controls. CeO(2) induced elevated phospholipids in BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a single dose of 3.5mg/kg CeO(2) and euthanized at 28 days post-exposure. Collectively, our studies show that CeO(2) induced fibrotic lung injury in rats, suggesting it may cause potential health effects.


Assuntos
Cério/toxicidade , Nanopartículas/toxicidade , Fibrose Pulmonar/induzido quimicamente , Animais , Líquido da Lavagem Broncoalveolar/citologia , Relação Dose-Resposta a Droga , Hidroxiprolina/análise , Pulmão/química , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/ultraestrutura , Masculino , Metaloproteinase 10 da Matriz/análise , Metaloproteinase 2 da Matriz/análise , Metaloproteinase 9 da Matriz/análise , Microscopia Eletrônica de Transmissão , Osteopontina/análise , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/análise
5.
Int J Nanomedicine ; 6: 2327-35, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22072870

RESUMO

BACKGROUND: Cerium oxide (CeO(2)) nanoparticles have been posited to have both beneficial and toxic effects on biological systems. Herein, we examine if a single intratracheal instillation of CeO(2) nanoparticles is associated with systemic toxicity in male Sprague-Dawley rats. METHODS AND RESULTS: Compared with control animals, CeO(2) nanoparticle exposure was associated with increased liver ceria levels, elevations in serum alanine transaminase levels, reduced albumin levels, a diminished sodium-potassium ratio, and decreased serum triglyceride levels (P < 0.05). Consistent with these data, rats exposed to CeO(2) nanoparticles also exhibited reductions in liver weight (P < 0.05) and dose-dependent hydropic degeneration, hepatocyte enlargement, sinusoidal dilatation, and accumulation of granular material. No histopathological alterations were observed in the kidney, spleen, and heart. Analysis of serum biomarkers suggested an elevation of acute phase reactants and markers of hepatocyte injury in the rats exposed to CeO(2) nanoparticles. CONCLUSION: Taken together, these data suggest that intratracheal instillation of CeO(2) nanoparticles can result in liver damage.


Assuntos
Cério/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Nanopartículas Metálicas/toxicidade , Administração por Inalação , Animais , Biomarcadores/sangue , Proteínas Sanguíneas , Cério/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Expressão Gênica/efeitos dos fármacos , Inflamação/induzido quimicamente , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Fígado/química , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Nanopartículas Metálicas/administração & dosagem , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
6.
Nanotoxicology ; 5(3): 312-25, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20925443

RESUMO

The use of cerium compounds as diesel fuel catalyst results in the emission of cerium oxide nanoparticles (CeO2) in the exhaust. This study characterized the potential effects of CeO2 exposure on lung toxicity. Male Sprague Dawley rats were exposed to CeO2 by a single intratracheal instillation at 0.15, 0.5, 1, 3.5 or 7 mg/kg body weight. At 1 day after exposure, CeO2 significantly reduced NO production, but increased IL-12 production, by alveolar macrophages (AM) in response to ex vivo lipopolysacchride (LPS) challenge, and caused AM apoptosis, through activation of caspases 9 and 3. CeO2 exposure markedly increased suppressor of cytokine signaling-1 at 1-day and elevated arginase-1 at 28-day post exposure in lung cells, while osteopontin was significantly elevated in lung tissue at both time points. CeO2 induced inflammation, cytotoxicity, air/blood barrier damage, and phospholipidosis with enlarged AM. Thus, CeO2 induced lung inflammation and injury in lungs which may lead to fibrosis.


Assuntos
Cério/toxicidade , Inflamação/induzido quimicamente , Pneumopatias/induzido quimicamente , Macrófagos Alveolares/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar/citologia , Cério/química , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos Alveolares/fisiologia , Masculino , Nanopartículas Metálicas/química , Ratos , Organismos Livres de Patógenos Específicos
7.
J Toxicol Environ Health A ; 72(8): 560-70, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19267316

RESUMO

Pulmonary responses to diesel exhaust particles (DEP) exposure are mediated through enhanced production of reactive oxygen species (ROS) and nitric oxide (NO) by alveolar macrophages (AM). The current study examined the differential roles of ROS and NO in DEP-induced lung injury using C57B/6J wild-type (WT) and inducible NO synthase knockout (iNOS KO) mice. Mice exposed by pharyngeal aspiration to DEP or carbon black particles (CB) (35 mg/kg) showed an inflammatory profile that included neutrophil infiltration, increased lactate dehydrogenase (LDH) activity, and elevated albumin content in bronchoalveolar lavage fluid (BALF) at 1, 3, and 7 d postexposure. The organic extract of DEP (DEPE) did not induce an inflammatory response. Comparing WT to iNOS KO mice, the results show that NO enhanced DEP-induced neutrophils infiltration and plasma albumin content in BALF and upregulated the production of the pro-inflammatory cytokine interleukin 12 (IL-12) by AM. DEP-exposed AM from iNOS KO mice displayed diminished production of IL-12 and, in response to ex vivo lipopolysaccharide (LPS) challenge, decreased production of IL-12 but increased production of IL-10 when compared to cells from WT mice. DEP, CB, but not DEPE, induced DNA damage and mitochondria dysfunction in AM, however, that is independent of cellular production of NO. These results demonstrate that DEP-induced immune/inflammatory responses in mice are regulated by both ROS- and NO-mediated pathways. NO did not affect ROS-mediated mitochondrial dysfunction and DNA damage but upregulated IL-12 and provided a counterbalance to the ROS-mediated adaptive stress response that downregulates IL-12 and upregulates IL-10.


Assuntos
Doenças Mitocondriais/induzido quimicamente , Óxido Nítrico Sintase Tipo II/fisiologia , Óxido Nítrico/toxicidade , Material Particulado/toxicidade , Pneumonia/induzido quimicamente , Espécies Reativas de Oxigênio/toxicidade , Emissões de Veículos/toxicidade , Animais , Disponibilidade Biológica , Líquido da Lavagem Broncoalveolar/citologia , Células Cultivadas , Ensaio Cometa , Citocinas/metabolismo , Dano ao DNA , L-Lactato Desidrogenase/metabolismo , Camundongos , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Doenças Mitocondriais/patologia , Óxido Nítrico Sintase Tipo II/genética , Material Particulado/farmacocinética , Pneumonia/patologia , Alvéolos Pulmonares/patologia
8.
J Toxicol Environ Health A ; 71(8): 521-32, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18338287

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are products of incomplete combustion that are commonly inhaled by workers in the dusty trades. Many PAHs are metabolized by cytochrome P-4501A1 (CYP1A1), which may facilitate excretion but may activate pulmonary carcinogens. PAHs also stimulate their own metabolism by inducing CYP1A1. Recent studies suggest that respirable coal dust exposure inhibits induction of pulmonary CYP1A1 using the model PAH beta-naphthoflavone. The effect of the occupational particulate respirable crystalline silica was investigated on PAH-dependent pulmonary CYP1A1 induction. Male Sprague-Dawley rats were exposed to intratracheal silica or vehicle and then intraperitoneal beta-naphthoflavone, a CYP1A1 inducer, and/or phenobarbital, an inducer of hepatic CYP2B1, or vehicle. Beta-naphthoflavone induced pulmonary CYP1A1, but silica attenuated this beta-naphthoflavone-induced CYP1A1 activity and also suppressed the activity of CYP2B1, the major constitutive CYP in rat lung. The magnitude of CYP activity suppression was similar regardless of silica exposure dose within a range of 5 to 20 mg/rat. Phenobarbital and beta-naphthoflavone had no effect on pulmonary CYP2B1 activity. Both enzymatic immunohistochemistry and immunofluorescent staining for CYP1A1 indicated that sites of CYP1A1 induction were nonciliated airway epithelial cells, endothelial cells, and the alveolar septum. Using immunofluorescent colocalization of CYP1A1 with cytokeratin 8, a marker of alveolar type II cells, the proximal alveolar region was the site of both increased alveolar type II cells and decreased proportional CYP1A1 expression in alveolar type II cells. Our findings suggest that in PAH-exposed rat lung, silica is a negative modifier of CYP1A1 induction and CYP2B1 activity.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Citocromo P-450 CYP1A1/metabolismo , Poeira , Material Particulado/efeitos adversos , Alvéolos Pulmonares/metabolismo , Dióxido de Silício/efeitos adversos , Silicose/fisiopatologia , Animais , Citocromo P-450 CYP1A1/efeitos dos fármacos , Citocromo P-450 CYP2B1/efeitos dos fármacos , Citocromo P-450 CYP2B1/metabolismo , Modelos Animais de Doenças , Indução Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Exposição por Inalação/efeitos adversos , Masculino , Exposição Ocupacional/efeitos adversos , Alvéolos Pulmonares/patologia , Ratos , Ratos Sprague-Dawley , beta-Naftoflavona/administração & dosagem
9.
J Toxicol Environ Health A ; 70(10): 820-8, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17454558

RESUMO

Exposure to diesel exhaust particles (DEP) was shown to increase the susceptibility of the lung to bacterial infection in rats. In this study, the effects of DEP on alveolar macrophage (AM) phagocytic and bactericidal functions and cytokine secretion by AM and lymphocytes in response to Listeria monocytogenes infection were investigated in vitro and the roles of different DEP components in these processes were compared. Exposure to DEP or the organic extracts of DEP (eDEP) significantly decreased the phagocytosis and killing of L. monocytogenes by AM obtained from normal rats. Washed DEP (wDEP) also decreased AM phagocytosis and bacterial killing to a lesser extent, whereas carbon black (CB) reduced AM phagocytosis but had no significant effect on AM bactericidal activity. DEP or eDEP concentration-dependently suppressed L. monocytogenes-induced secretion of tumor necrosis factor-alpha, interleukin (IL)-1beta, and IL-12 by AM and of IL-2 and interferon-gamma by lymphocytes obtained from L. monocytogenes-infected rats, but augmented the AM secretion of IL-10. wDEP or CB, however, exerted little or no effect on these L. monocytogenes-induced cytokines. These results provide direct evidence that DEP, through the actions of organic components, suppresses AM phagocytic and bactericidal functions in vitro. Inhibition of AM phagocytic function and alterations of AM and lymphocyte cytokine secretion by DEP and DEP organic compounds may be implicated in the diminished AM bactericidal activity and the lymphatic arm of the host immune system, thus resulting in an suppressed pulmonary clearance of L. monocytogenes and an increased susceptibility of the lung to bacterial infection.


Assuntos
Listeriose/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Fagocitose/efeitos dos fármacos , Emissões de Veículos/toxicidade , Análise de Variância , Animais , Citocinas/imunologia , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Listeria monocytogenes/imunologia , Masculino , Tamanho da Partícula , Ratos , Ratos Endogâmicos BN
10.
Environ Health Perspect ; 114(9): 1367-73, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16966090

RESUMO

BACKGROUND: Miners inhaling respirable coal dust (CD) frequently develop coal workers' pneumoconiosis, a dust-associated pneumoconiosis characterized by lung inflammation and variable fibrosis. Many coal miners are also exposed to polycyclic aromatic hydrocarbon (PAH) components of diesel engine exhaust and cigarette smoke, which may contribute to lung disease in these workers. Recently, apoptosis was reported to play a critical role in the development of another pneumoconiosis of miners, silicosis. In addition, CD was reported to suppress cytochrome P450 1A1 (CYP1A1) induction by PAHs. METHODS: We investigated the hypothesis that apoptosis plays a critical role in lung injury and down-regulation of CYP1A1 induction in mixed exposures to CD and PAHs. We exposed rats intratracheally to 0.0, 2.5, 10.0, 20.0, or 40.0 mg/rat CD and, 11 days later, to intraperitoneal beta-naphthoflavone (BNF) , a PAH. In another group of rats exposed to CD and BNF, caspase activity was inhibited by injection of the pan-caspase inhibitor Q-VD-OPH [quinoline-Val-Asp (OMe) -CH2-OPH]. RESULTS: In rats exposed to BNF, CD exposure increased alveolar expression of the proapoptotic mediator Bax but decreased CYP1A1 induction relative to BNF exposure alone. Pan-caspase inhibition decreased CD-associated Bax expression and apoptosis but did not restore CYP1A1 activity. Further, CD-induced lung inflammation and alveolar epithelial cell hypertrophy and hyperplasia were not suppressed by caspase inhibition. CONCLUSIONS: Combined BNF and CD exposure increased Bax expression and apoptosis in the lung, but Bax and apoptosis were not the major determinants of early lung injury in this model.


Assuntos
Apoptose/efeitos dos fármacos , Caspases , Carvão Mineral/toxicidade , Citocromo P-450 CYP1A1/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Animais , Apoptose/fisiologia , Hidrocarboneto de Aril Hidroxilases/metabolismo , Inibidores de Caspase , Caspases/metabolismo , Citocromo P-450 CYP1B1 , Relação Dose-Resposta a Droga , Poeira , Pulmão/patologia , Masculino , Pneumonia/induzido quimicamente , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Ratos , Ratos Sprague-Dawley , beta-Naftoflavona/toxicidade
11.
Environ Health Perspect ; 114(8): 1253-8, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16882535

RESUMO

Diesel exhaust particles (DEPs) have been shown to activate oxidant generation by alveolar macrophages (AMs), alter xenobiotic metabolic pathways, and modify the balance of pro-antiinflammatory cytokines. In this study we investigated the role of nitric oxide (NO) in DEP-mediated and DEP organic extract (DEPE) -mediated inflammatory responses and evaluated the interaction of inducible NO synthase (iNOS) and cytochrome P450 1A1 (CYP1A1). Male Sprague-Dawley rats were intratracheally (IT) instilled with saline, DEPs (35 mg/kg), or DEPEs (equivalent to 35 mg DEP/kg), with or without further treatment with an iNOS inhibitor, aminoguanidine (AG; 100 mg/kg), by intraperitoneal injection 30 min before and 3, 6, and 9 hr after IT exposure. At 1 day postexposure, both DEPs and DEPEs induced iNOS expression and NO production by AMs. AG significantly lowered DEP- and DEPE-induced iNOS activity but not the protein level while attenuating DEPE- but not DEP-mediated pulmonary inflammation, airway damage, and oxidant generation by AMs. DEP or DEPE exposure resulted in elevated secretion of both interleukin (IL) -12 and IL-10 by AMs. AG significantly reduced DEP- and DEPE-activated AMs in IL-12 production. In comparison, AG inhibited IL-10 production by DEPE-exposed AMs but markedly increased its production by DEP-exposed AMs, suggesting that NO differentially regulates the pro- and antiinflammatory cytokine balance in the lung. Both DEPs and DEPEs induced CYP1A1 expression. AG strongly inhibited CYP1A1 activity and lung S9 activity-dependent 2-aminoanthracene mutagenicity. These studies show that NO plays a major role in DEPE-induced lung inflammation and CYP-dependent mutagen activation but a lesser role in particulate-induced inflammatory damage.


Assuntos
Poluentes Atmosféricos/toxicidade , Citocromo P-450 CYP1A1/fisiologia , Gasolina/toxicidade , Mutagênicos , Óxido Nítrico Sintase Tipo II/fisiologia , Pneumonia/enzimologia , Pneumonia/etiologia , Emissões de Veículos/toxicidade , Animais , Células Cultivadas , Citocromo P-450 CYP1A1/biossíntese , Citocromo P-450 CYP1A1/metabolismo , Citocinas/análise , Técnicas In Vitro , L-Lactato Desidrogenase/metabolismo , Luminescência , Masculino , Microssomos/enzimologia , Microssomos/metabolismo , Testes de Mutagenicidade , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/metabolismo , Ácido Peroxinitroso/metabolismo , Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Salmonella typhimurium/genética , Frações Subcelulares/enzimologia , Frações Subcelulares/metabolismo
12.
Toxicol Sci ; 88(1): 202-12, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16107553

RESUMO

We have previously demonstrated that exposure to diesel exhaust particles (DEP) prior to ovalbumin (OVA) sensitization in rats reduced OVA-induced airway inflammation. In the present study, Brown Norway rats were first sensitized to OVA (42.3 +/- 5.7 mg/m3) for 30 min on days 1, 8, and 15, then exposed to filtered air or DEP (22.7 +/- 2.5 mg/m3) for 4 h/day on days 24-28, and challenged with OVA on day 29. Airway responsiveness was examined on day 30, and animals were sacrificed on day 31. Ovalbumin sensitization and challenge resulted in a significant infiltration of neutrophils, lymphocytes, and eosinophils into the lung, elevated presence of CD4+ and CD8+ T lymphocytes in lung draining lymph nodes, and increased production of serum OVA-specific immunoglobulin (Ig)E and IgG. Diesel exhaust particles pre-exposure augmented OVA-induced production of allergen-specific IgE and IgG and pulmonary inflammation characterized by marked increases in T lymphocytes and infiltration of eosinophils after OVA challenge, whereas DEP alone did not have these effects. Although OVA-sensitized rats showed modest response to methacholine challenge, it was the combined DEP and OVA exposure that produced significant airway hyperresponsiveness in this animal model. The effect of DEP pre-exposure on OVA-induced immune responses correlated with an interactive effect of DEP with OVA on increased production of reactive oxygen species (ROS) and nitric oxide (NO) by alveolar macrophages (AM) and alveolar type II (ATII) cells, NO levels in bronchoalveolar lavage fluid, the induction of inducible NO synthase expression in AM and ATII cells, and a depletion of total intracellular glutathione (GSH) in AM and lymphocytes. These results show that DEP pre-exposure exacerbates the allergic responses to the subsequent challenge with OVA in OVA-sensitized rats. This DEP effect may be, at least partially, attributed to the elevated generation of ROS in AM and ATII cells, a depletion of GSH in AM and lymphocytes, and an increase in AM and ATII cell production of NO.


Assuntos
Poluentes Atmosféricos/toxicidade , Alérgenos/administração & dosagem , Hiper-Reatividade Brônquica/induzido quimicamente , Exposição por Inalação , Ovalbumina/administração & dosagem , Emissões de Veículos/toxicidade , Alérgenos/imunologia , Animais , Hiper-Reatividade Brônquica/imunologia , Testes de Provocação Brônquica , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Leucócitos/patologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Masculino , Óxido Nítrico/metabolismo , Ovalbumina/imunologia , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Ratos , Ratos Endogâmicos BN , Espécies Reativas de Oxigênio/metabolismo , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia
13.
Toxicol Sci ; 88(1): 73-81, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16107554

RESUMO

Studies have shown that exposure to diesel exhaust particles (DEP) suppresses pulmonary host defense against bacterial infection. The present study was carried out to characterize whether DEP exposure exerts a sustained effect in which inhaled DEP increase the susceptibility of the lung to bacterial infection occurring at a later time. Brown Norway rats were exposed to filtered air or DEP by inhalation at a dose of 21.2 +/- 2.3 mg/m3, 4 h/day for 5 days, and intratracheally instilled with saline or 100,000 Listeria monocytogenes (Listeria) 7 days after the final DEP exposure. Bacterial growth and cellular responses to DEP and Listeria exposures were examined at 3 and 7 days post-infection. The results showed that inhaled DEP prolonged the growth of bacteria, administered 7 days post DEP exposure, in the lung as compared to the air-exposed controls. Pulmonary responses to Listeria infection were characterized by increased production of interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, IL-12, and IL-10 by alveolar macrophages (AM) and increased presence of T lymphocytes and their CD4+ and CD8+ subsets in lung draining lymph nodes that secreted elevated levels of IL-2, IL-6, IL-10, and interferon (IFN)-gamma. Diesel exhaust particles were found to inhibit Listeria-induced production of IL-1beta and TNF-alpha, which are responsible for the innate immunity, and IL-12, which initiates the development of T helper (Th)1 responses, but enhance Listeria-induced AM production of IL-10, which prolongs Listeria survival in these phagocytes. The dual action of DEP on AM production of IL-12 and IL-10 correlated with an inhibition of the development of bacteria-specific T lymphocytes by DEP. Cytokine production by lymphocytes from DEP- and Listeria-exposed rats showed a marked decrease in the production of IL-2, IL-10, and IFN-gamma compared to Listeria infection alone, suggesting either that DEP inhibit the production of cytokines by lymphocytes or that these lymphocytes contained T-cell subsets that are different from those of Listeria infection alone and less effective in mediating Th1 immune responses. This study demonstrates that inhaled DEP, after a 7-day resting period, increase the susceptibility of the lung to bacterial infection occurring at a later time by inhibiting macrophage immune function and suppressing the development of T-cell-mediated immune responses. The results support the epidemiological observations that exposure to DEP may be responsible for the pulmonary health effects on humans.


Assuntos
Poluentes Atmosféricos/toxicidade , Imunidade Celular/efeitos dos fármacos , Exposição por Inalação , Listeriose/imunologia , Linfócitos T/efeitos dos fármacos , Emissões de Veículos/toxicidade , Animais , Lavagem Broncoalveolar , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/metabolismo , Listeria monocytogenes/imunologia , Listeria monocytogenes/patogenicidade , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Masculino , Ratos , Ratos Endogâmicos BN , Linfócitos T/imunologia
14.
Toxicol Sci ; 88(1): 150-60, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16120749

RESUMO

Exposure to diesel exhaust particles (DEP) during the sensitization process has been shown to increase antigen-specific IgE production and aggravate allergic airway inflammation in human and animal models. In this study, we evaluated the effect of short-term DEP exposure on ovalbumin (OVA)-mediated responses using a post-sensitization model. Brown Norway rats were first exposed to filtered air or DEP (20.6 +/- 2.7 mg/m3) for 4 h/day for five consecutive days. One day after the final air or DEP exposure (day 1), rats were sensitized with aerosolized OVA (40.5 +/- 6.3 mg/m3), and then again on days 8 and 15, challenged with OVA on day 29, and sacrificed on days 9 or 30, 24 h after the second OVA exposure or the final OVA challenge, respectively. Control animals received aerosolized saline instead of OVA. DEP were shown to elicit an adjuvant effect on the production of antigen-specific IgE and IgG on day 30. At both time points, no significant airway inflammatory responses and lung injury were found for DEP exposure alone. However, the OVA-induced inflammatory cell infiltration, acellular lactate dehydrogenase activity and albumin content in bronchoalveolar lavage (BAL) fluid, and numbers of T cells and their CD4+ and CD8+ subsets in lung-draining lymph nodes were markedly reduced by DEP on day 30 compared with the air-plus-OVA exposure group. The OVA-induced nitric oxide (NO) in the BAL fluid and production of NO, interleukin (IL)-10, and IL-12 by alveolar macrophages (AM) were also significantly lowered by DEP on day 30 as well as day 9. DEP or OVA alone decreased intracellular glutathione (GSH) in AM and lymphocytes on days 9 and 30. The combined DEP and OVA exposure resulted in further depletion of GSH in both cell types. These results show that short-term DEP exposure prior to sensitization had a delayed effect on enhancement of the sensitization in terms of allergen-specific IgE and IgG production, but caused an attenuation of the allergen-induced airway inflammatory responses.


Assuntos
Poluentes Atmosféricos/toxicidade , Hiper-Reatividade Brônquica/induzido quimicamente , Bronquite/induzido quimicamente , Exposição por Inalação , Ovalbumina/administração & dosagem , Emissões de Veículos/toxicidade , Adjuvantes Imunológicos/administração & dosagem , Poluentes Atmosféricos/imunologia , Alérgenos/efeitos adversos , Alérgenos/imunologia , Animais , Hiper-Reatividade Brônquica/imunologia , Bronquite/imunologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/metabolismo , Modelos Animais de Doenças , Glutationa/metabolismo , Imunoglobulina E/sangue , L-Lactato Desidrogenase/análise , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Masculino , Óxido Nítrico/análise , Ovalbumina/imunologia , Ratos , Ratos Endogâmicos BN , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia
15.
Environ Health Perspect ; 113(5): 612-7, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15866772

RESUMO

Diesel exhaust particles (DEPs) at three concentrations (5, 35, and 50 mg/kg body weight) were instilled into rats intratracheally. We studied gene expression at 1, 7, and 30 days postexposure in cells obtained by bronchoalveolar lavage (BAL) and in lung tissue. Using real-time reverse transcriptase-polymerase chain reaction (RT-PCR), we measured the mRNA levels of eight genes [interleukin (IL)-1beta, IL-6, IL-10, iNOS (inducible nitric oxide synthase), MCP-1 (monocyte chemoattractant protein-1), MIP-2 (macrophage inflammatory protein-2), TGF-beta1 (transforming growth factor-beta1), and TNF-alpha (tumor necrosis factor-alpha )] in BAL cells and four genes [IL-6, ICAM-1 (intercellular adhesion molecule-1), GM-CSF (granulocyte/macrophage-colony stimulating factor), and RANTES (regulated upon activation normal T cell expressed and secreted)] in lung tissue. In BAL cells on day 1, high-dose exposure induced a significant up-regulation of IL-1beta, iNOS, MCP-1, and MIP-2 but no change in IL-6, IL-10, TGF-beta1, and TNF-alpha mRNA levels. There was no change in the mRNA levels of IL-6, RANTES, ICAM-1, and GM-CSF in lung tissue. Nitric oxide production and levels of MCP-1 and MIP-2 were increased in the 24-hr culture media of alveolar macrophages (AMs) obtained on day 1. IL-6, MCP-1, and MIP-2 levels were also elevated in the BAL fluid. BAL fluid also showed increases in albumin and lactate dehydrogenase. The cellular content in BAL fluid increased at all doses and at all time periods, mainly due to an increase in polymorphonuclear leukocytes. In vitro studies in AMs and cultured lung fibroblasts showed that lung fibroblasts are a significant source of IL-6 and MCP-1 in the lung.


Assuntos
Citocinas/biossíntese , Perfilação da Expressão Gênica , Inflamação , Pneumopatias/etiologia , Emissões de Veículos/efeitos adversos , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Técnicas de Cultura de Células , Citocinas/imunologia , Fibroblastos , Pneumopatias/imunologia , Macrófagos Alveolares/imunologia , Óxido Nítrico/análise , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
16.
Toxicol Sci ; 82(1): 143-53, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15319486

RESUMO

Diesel exhaust particles (DEP) have been shown to suppress alveolar macrophage (AM)-mediated pulmonary immune responses to Listeria monocytogenes in vivo. In this study, effects of DEP-derived reactive oxygen species (ROS) and heme oxygenase (HO)-1 on AM-mediated immune responses to L. monocytogenes were investigated. Brown Norway rats were intratracheally inoculated with 100,000 L. monocytogenes, and AM were isolated at 7 days post-infection. Exposure to DEP or their organic extract (eDEP), but not the washed DEP (wDEP) or carbon black, increased intracellular ROS and HO-1 expression in AM. Induction of ROS and HO-1 by eDEP was partially reversed by alpha-naphthoflavone, a cytochrome P450 1A1 inhibitor, and totally blocked by N-acetylcysteine. In addition, exposure to eDEP, but not wDEP, inhibited lipopolysacchride-stimulated secretion of tumor necrosis factor-alpha (TNF-alpha) and interleukin-12 (IL-12), but augmented production of IL-10 by AM. Kinetic studies showed that modulation of cytokines by eDEP was preceded by ROS and HO-1 induction. Furthermore, pretreatment of AM with superoxide dismutase (SOD) or zinc protoporphrin IX (Znpp), which attenuated eDEP-induced HO-1 expression/activity, substantially inhibited eDEP effect on IL-10. Finally, direct stimulation with pyrogallol (PYR), a superoxide donor, upregulated HO-1 and IL-10 but decreased secretion of IL-12 in L. monocytogenes-infected AM. These results show that DEP, through eDEP-mediated ROS, induce HO-1 expression and IL-10 production and at the same time inhibit AM production of TNF-alpha and IL-12 to dampen the host immune responses. The results also suggest that HO-1 may play an important role in regulating production of IL-10 by DEP-exposed and L. monocytogenes-infected AM.


Assuntos
Heme Oxigenase (Desciclizante)/metabolismo , Listeriose/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Espécies Reativas de Oxigênio/metabolismo , Emissões de Veículos/toxicidade , Acetilcisteína/farmacologia , Animais , Benzoflavonas/farmacologia , Citocinas/metabolismo , Combinação de Medicamentos , Heme Oxigenase-1 , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Lipopolissacarídeos/farmacologia , Listeria monocytogenes/imunologia , Masculino , Protoporfirinas/farmacologia , Pirogalol/farmacologia , Ratos , Ratos Endogâmicos BN , Superóxido Dismutase/farmacologia
17.
Am J Respir Cell Mol Biol ; 31(2): 171-83, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15072980

RESUMO

Cytochrome P4501A1 (CYP1A1) metabolizes polycyclic aromatic hydrocarbons in cigarette smoke to DNA-binding reactive intermediates associated with carcinogenesis. Epidemiologic studies indicate that the majority of coal miners are smokers but have a lower risk of lung cancer than other smokers. We hypothesized that coal dust (CD) exposure modifies pulmonary carcinogenesis by altering CYP1A1 induction. Therefore, male Sprague Dawley rats were intratracheally instilled with 2.5, 10, 20, or 40 mg CD/rat or vehicle (saline); and 11 d later, pulmonary CYP1A1 was induced by intraperitoneal injection of beta-naphthoflavone (BNF; 50 mg/kg). Fourteen days after CD exposure, CYP1A1 protein and activity were measured by Western blot and 7-ethoxyresorufin-O-deethylase activity, respectively. CYP1A1 and the alveolar type II markers, cytokeratins 8/18, were localized and quantified in lung sections by dual immunofluorescence with morphometry. The area of CYP1A1 expression in alveolar septa and alveolar type II cells in response to BNF was reduced by exposure to 20 or 40 mg CD compared with BNF alone. CD exposure significantly inhibited BNF-induced 7-ethoxyresorufin-O-deethylase activity in a dose-responsive manner. By Western blot, induction of CYP1A1 protein by BNF was significantly reduced by 40 mg CD compared with BNF alone. These findings indicate that CD decreases BNF-induced CYP1A1 protein expression and activity in the lung.


Assuntos
Carvão Mineral , Citocromo P-450 CYP1A1/metabolismo , Poeira , Macrófagos Alveolares/efeitos dos fármacos , Animais , Western Blotting , Imunofluorescência , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Pulmão/patologia , Macrófagos Alveolares/enzimologia , Masculino , Ratos , Ratos Sprague-Dawley
18.
J Toxicol Environ Health A ; 67(3): 221-31, 2004 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-14681077

RESUMO

The effect of diesel exhaust particulate (DEP) exposure on innate, cellular and humoral pulmonary immunity was studied using high-dose, acute-exposure rat, mouse, and cell culture models. DEP consists of a complex mixture of petrochemical-derived organics adsorbed onto elemental carbon particles. DEP is a major component of particulate urban air pollution and a health concern in both urban and occupational environments. The alveolar macrophage is considered a key cellular component in pulmonary innate immunity. DEP and DEP organic extracts have been found to suppress alveolar macrophage function as demonstrated by reduced production of cytokines (interleukin-1 [IL-1], tumor necrosis factor- alpha [TNF- alpha]) and reactive oxygen species (ROS) in response to a variety of agents, including lipopolysaccharide (LPS), interferon- gamma (IFN- gamma), and bacteria. Fractionation of DEP organic extract suggests that this activity was predominately in polyaromatic-containing and more polar (resin) fractions. Organic-stripped DEP did not alter these innate pulmonary immune responses. DEP also depressed pulmonary clearance of Listeria monocytogenes and Bacillus Calmette-Guerin (BCG). The contribution of the organic component of DEP is less well defined with respect to acquired and humoral immunity. Indeed, both DEP and carbon black enhanced humoral immune responses (specific immunoglobulin [Ig] E and IgG) in an ovalbumin-sensitized rat model. It is concluded that both the particulate and adsorbed organics may contribute to DEP-mediated immune alterations.


Assuntos
Poluentes Atmosféricos/toxicidade , Formação de Anticorpos/imunologia , Modelos Animais de Doenças , Imunidade Celular/imunologia , Exposição por Inalação/efeitos adversos , Pneumonia , Emissões de Veículos/toxicidade , Doença Aguda , Poluentes Atmosféricos/química , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Monitoramento Ambiental , Monitoramento Epidemiológico , Exposição por Inalação/análise , Interferon gama/imunologia , Interleucina-1/imunologia , Lipopolissacarídeos/imunologia , Macrófagos Alveolares/imunologia , Camundongos , Pneumonia/epidemiologia , Pneumonia/etiologia , Pneumonia/imunologia , Ratos , Espécies Reativas de Oxigênio/imunologia , Fator de Necrose Tumoral alfa/imunologia , Emissões de Veículos/análise
19.
Toxicol Sci ; 77(2): 263-71, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14657513

RESUMO

Diesel exhaust particles (DEP) have been shown to alter pulmonary immune responses to bacterial infection. Exposure of rats to 100 mg/m(3) DEP for 4 h was found to aggravate Listeria monocytogenes(Listeria) infection at 3 days postinfection, but the bacteria were largely cleared at 7 days postinfection due to the development of a strong T cell-mediated immunity. In the present study, we examined the effects of repeated DEP exposure at lower doses on pulmonary responses to bacterial infection. Brown Norway rats were exposed to DEP by inhalation at 20.62 +/- 1.31 mg/m 3 for 4 h/day for 5 days, followed by intratracheal inoculation with 100,000 Listeria at 2 h after the last DEP exposure. DEP-exposed rats showed a significant increase in lung bacterial load at both 3 and 7 days postinfection. The repeated DEP exposure was shown to suppress both the innate, orchestrated by alveolar macrophages (AM), and T cell-mediated responses to Listeria. DEP inhibited AM production of interleukin- (IL-) 1beta, tumor necrosis factor- (TNF-) alpha, and IL-12 but enhanced Listeria-induced AM production of IL-10, which has been shown to prolong the survival of intracellular pathogens such as Listeria. DEP exposure also suppressed the development of bacteria-specific lymphocytes from lung-draining lymph nodes, as indicated by the decreased numbers of T lymphocytes and their CD4(+) and CD8(+) subsets. Furthermore, the DEP exposure markedly inhibited the Listeria-induced lymphocyte secretion of IL-2 at day 7, IL-10 at days 3 and 7, and interferon- (IFN-) gamma at days 3 to 10 postinfection when compared to air-exposed controls. These results show a sustained pattern of downregulation of T cell-mediated immune responses by repeated low-dose DEP exposure, which is different from the results of a single high-dose exposure where the acute effect of DEP aggravated bacteria infection but triggered a strong T cell-mediated immunity.


Assuntos
Imunidade Celular/efeitos dos fármacos , Exposição por Inalação , Listeriose/imunologia , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/toxicidade , Animais , Lavagem Broncoalveolar , Células Cultivadas , Citocinas/biossíntese , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Masculino , Tamanho da Partícula , Ratos , Ratos Endogâmicos BN , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia
20.
Inhal Toxicol ; 15(13): 1347-68, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14569497

RESUMO

Asphalt fume inhalation has been suspected of affecting immune function in exposed workers. The objective of this study was to evaluate the effect of asphalt exposure on lung immune responses in rats using a bacterial infectivity model. Pathogen-free male Sprague-Dawley rats were exposed by inhalation to asphalt fumes (72.6 +/- 4.95 mg/m3) or filtered air for 6 h/day for 5 days. One day after the final asphalt exposure, rats were intratracheally inoculated with 5 x 10(5) Listeria monocytogenes. At 0 (prior to bacterial inoculation), 3, and 7 days after L. monocytogenes instillation, the lungs of each animal were divided. Bronchoalveolar lavage (BAL) was performed on right lungs. The recovered BAL cells were then differentiated and counted, and alveolar macrophage (AM) function was determined. Albumin and lactate dehydrogenase (LDH), two indices of lung injury, were measured in the acellular BAL fluid. To assess bacterial clearance, the left lungs were removed, homogenized, and bacterial colony-forming units (CFUs) were counted. In addition, lung-draining lymph nodes were removed, and lymphocyte phenotype and lymphocyte-induced cytokine production were examined. Asphalt fume exposure did not cause lung injury or inflammation in rats in the absence of infection. Infection induced elevations in AMs, neutrophils (PMNs), albumin, and LDH. Importantly, no significant differences were seen when comparing the asphalt group with the air and nonexposed naive groups at any time before or after infection. Also, asphalt fume inhalation exposure did not affect the rate of pulmonary clearance of L. monocytogenes or AM production of reactive oxygen and nitrogen species. However, asphalt-related increases in lymphocyte secretion of interferon (IFN)-gamma, interleukin (IL)-6, and IL-10 were observed at different times after bacterial infection, whereas the total number of lymph-node cells and the percentage of CD4+ and CD8+ cells were not significantly different among the treatment groups. Despite the asphalt-induced changes observed in lymphokine secretion, adaptive immune function seemed to function properly in lung defense against bacterial infection. Because innate nonspecific lung responses and pulmonary clearance of L. monocytogenes were unaffected by asphalt fume exposure, lung defenses were sufficient to control the infection. It was concluded that acute inhalation of asphalt fumes at a high concentration had a minimal effect on lung immune responses to infection in rats.


Assuntos
Hidrocarbonetos/intoxicação , Exposição por Inalação , Listeriose/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Exposição Ocupacional , Animais , Citocinas/biossíntese , Modelos Animais de Doenças , Hidrocarbonetos/administração & dosagem , Incineração , Listeria monocytogenes/patogenicidade , Pulmão/patologia , Pneumopatias/etiologia , Pneumopatias/imunologia , Linfócitos/imunologia , Linfócitos/fisiologia , Masculino , Fenótipo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...