Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2403322, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690808

RESUMO

2D layered metallic graphite composites are promising electromagnetic wave absorption materials (EWAMs) for their combined properties of abundant interlayer free spaces, rich metallic polarized sites, and high conductivity, but the controllable synthesis remains rather challenging. Herein, a dual-step redox engineering strategy is developed by employing cobalt boron imidazolate framework (Co-BIF) to construct 2D CoNi-alloy embedded B, N-doped carbon layers (2D-CNC) as a promising EWAM. In the first step, a chemical etching oxidation process on Co-BIF is used to obtain an optimized 2D-CoNi-layered double hydroxide (2D-CoNi-LDH) intermediate and in the second, high-temperature calcination reduction is implemented to modify graphitization of the degree of the 2D-CNC. The obtained sample delivers superior reflection loss (RLmin) of -60.1 dB and wide effective absorption bandwidth (EAB) of 6.24 GHz. The synergy mechanisms of interfacial/dipole polarization and magnetic coupling are in-depth evidenced by the hologram and Lorentz electron microscopy, revealing its significant contribution on multireflection and impedance matching. Further theoretical evaluation by COMSOL simulation in different fields based on the dynamic loss process toward the test ring reveals the in situ EW attenuation process. This work presents a strategy to develop multifunctional light-weight infrared stealthy aerogel with superior pressure-resistant, anti-corrosion, and heat-insulating properties for future applications.

2.
Drug Metab Dispos ; 52(5): 408-421, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38575184

RESUMO

Metastasis is the most common pathway of cancer death. The lack of effective predictors of breast cancer metastasis is a pressing issue in clinical practice. Therefore, exploring the mechanism of breast cancer metastasis to uncover reliable predictors is very important for the clinical treatment of breast cancer patients. In this study, tandem mass tag quantitative proteomics technology was used to detect protein content in primary breast tumor tissue samples from patients with metastatic and nonmetastatic breast cancer at diagnosis. We found that the high expression of yin-yang 1(YY1) is strongly associated with poor prognosis in high-grade breast cancer. YY1 expression was detected in both clinical tumor tissue samples and tumor tissue samples from mammary-specific polyomavirus middle T antigen overexpression mouse model mice. We demonstrated that upregulation of YY1 expression was closely associated with breast cancer metastasis and that high YY1 expression could promote the migratory invasive ability of breast cancer cells. Mechanistically, YY1 directly binds to the UGT2B7 mRNA initiation sequence ATTCAT, thereby transcriptionally regulating the inhibition of UGT2B7 expression. UGT2B7 can regulate the development of breast cancer by regulating estrogen homeostasis in the breast, and the abnormal accumulation of estrogen, especially 4-OHE2, promotes the migration and invasion of breast cancer cells, ultimately causing the development of breast cancer metastasis. In conclusion, YY1 can regulate the UGT2B7-estrogen metabolic axis and induce disturbances in estrogen metabolism in breast tumors, ultimately leading to breast cancer metastasis. Disturbances in estrogen metabolism in the breast tissue may be an important risk factor for breast tumor progression and metastasis SIGNIFICANCE STATEMENT: In this study, we propose for the first time a regulatory relationship between YY1 and the UGT2B7/estrogen metabolism axis and explore the molecular mechanism. Our study shows that the YY1/UGT2B7/estrogen axis plays an important role in the development and metastasis of breast cancer. This study further elucidates the potential mechanisms of YY1-mediated breast cancer metastasis and the possibility and promise of YY1 as a predictor of cancer metastasis.


Assuntos
Neoplasias da Mama , Mama , Humanos , Animais , Camundongos , Feminino , Linhagem Celular Tumoral , Mama/metabolismo , Neoplasias da Mama/metabolismo , Estrogênios , Homeostase , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glucuronosiltransferase/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
3.
Molecules ; 29(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38611730

RESUMO

The selective oxidation of biobutanol to prepare butyric acid is an important conversion process, but the preparation of low-temperature and efficient catalysts for butanol oxidation is currently a bottleneck problem. In this work, we prepared Pt-TiO2 catalysts with different Pt particle sizes using a simple one-step hydrothermal/solvothermal method. Transmission electron microscopy and X-ray diffraction results showed that the average size of the Pt particles ranged from 1.1 nm to 8.7 nm. Among them, Pt-TiO2 with an average particle size of 3.6 nm exhibited the best catalytic performance for biobutanol. It was capable of almost completely converting butanol, even at room temperature (30 °C), with a 98.9% biobutanol conversion, 98.4% butyric acid selectivity, and a turnover frequency (TOF) of 36 h-1. Increasing the reaction temperature to 80 and 90 °C, the corresponding TOFs increased rapidly to 355 and 619 h-1. The relationship between the electronic structure of Pt and its oxidative performance suggests that the synergistic effect of the dual sites, Pt0 and Pt2+, could be the primary factor contributing to its elevated reactivity.

4.
Small ; : e2400292, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38659378

RESUMO

Aqueous Zn batteries employing mildly acidic electrolytes have emerged as promising contenders for safe and cost-effective energy storage solutions. Nevertheless, the intrinsic reversibility of the Zn anode becomes a focal concern due to the involvement of acidic electrolyte, which triggers Zn corrosion and facilitates the deposition of insulating byproducts. Moreover, the unregulated growth of Zn over cycling amplifies the risk of internal short-circuiting, primarily induced by the formation of Zn dendrites. In this study, a class of glucose-derived monomers and a block copolymer are synthesized through a building-block assembly strategy, ultimately leading to uncover the optimal polymer structure that suppresses the Zn corrosion while allowing efficient ion conduction with a substantial contribution from cation transport. Leveraging these advancements, remarkable enhancements are achieved in the realm of Zn reversibility, exemplified by a spectrum of performance metrics, including robust cycling stability without voltage overshoot and short-circuiting during 3000 h of cycling, stable operation at a high depth of charge/discharge of 75% and a high current density, >95% Coulombic efficiency over 2000 cycles, successful translation of the anode improvement to full cell performance. These polymer designs offer a transformative path based on the modular synthesis of polymeric coatings toward highly reversible Zn anode.

5.
Reprod Sci ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499949

RESUMO

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women. This study aimed to investigate the therapeutic effects and mechanism of Jujuboside A on PCOS using a dehydroepiandrosterone (DHEA)-induced PCOS mouse model. Estrogen and androgen homeostasis was evaluated in serum from both clinical samples and PCOS mice. The stages of the estrous cycle were determined based on vaginal cytology. The ovarian morphology was observed by stained with hematoxylin and eosin. Moreover, we analyzed protein expression of cytochrome P450 1A1 (CYP1A1), cytochrome P450 1A2 (CYP1A2) and aryl hydrocarbon receptor (AhR) in ovary and KGN cells. Molecular docking, immunofluorescence, and luciferase assay were performed to confirm the activation of AhR by Jujuboside A. Jujuboside A effectively alleviated the disturbance of estrogen homeostasis and restored ovarian function, leading to an improvement in the occurrence and progression of PCOS. Furthermore, the protective effect of JuA against PCOS was dependent on increased CYP1A2 levels regulated by AhR. Our findings suggest that Jujuboside A improves estrogen disorders and may be a potential therapeutic agent for the treatment of PCOS.

6.
Adv Mater ; 36(15): e2310667, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38232386

RESUMO

Zn batteries show promise for microscale applications due to their compatibility with air fabrication but face challenges like dendrite growth and chemical corrosion, especially at the microscale. Despite previous attempts in electrolyte engineering, achieving successful patterning of electrolyte microscale devices has remained challenging. Here, successful patterning using photolithography is enabled by incorporating caffeine into a UV-crosslinked polyacrylamide hydrogel electrolyte. Caffeine passivates the Zn anode, preventing chemical corrosion, while its coordination with Zn2+ ions forms a Zn2+-conducting complex that transforms into ZnCO3 and 2ZnCO3·3Zn(OH)2 over cycling. The resulting Zn-rich interphase product significantly enhances Zn reversibility. In on-chip microbatteries, the resulting solid-electrolyte interphase allows the Zn||MnO2 full cell to cycle for over 700 cycles with an 80% depth of discharge. Integrating the photolithographable electrolyte into multilayer microfabrication creates a microbattery with a 3D Swiss-roll structure that occupies a footprint of 0.136 mm2. This tiny microbattery retains 75% of its capacity (350 µAh cm-2) for 200 cycles at a remarkable 90% depth of discharge. The findings offer a promising solution for enhancing the performance of Zn microbatteries, particularly for on-chip microscale devices, and have significant implications for the advancement of autonomous microscale devices.

7.
J Hazard Mater ; 465: 133493, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38228000

RESUMO

Wastewater treatment plants (WWTPs) are known to harbor antibiotic resistance genes (ARGs), which can potentially spread to the environment and human populations. However, the extent and mechanisms of ARG transfer in WWTPs are not well understood due to the high microbial diversity and limitations of molecular techniques. In this study, we used a microfluidic-based mini-metagenomics approach to investigate the transfer potential and mechanisms of ARGs in activated sludge from WWTPs. Our results show that while diverse ARGs are present in activated sludge, only a few highly similar ARGs are observed across different taxa, indicating limited transfer potential. We identified two ARGs, ermF and tla-1, which occur in a variety of bacterial taxa and may have high transfer potential facilitated by mobile genetic elements. Interestingly, genes that are highly similar to the sequences of these two ARGs, as identified in this study, display varying patterns of abundance across geographic regions. Genes similar to ermF found are widely found in Asia and the Americas, while genes resembling tla-1 are primarily detected in Asia. Genes similar to both genes are barely detected in European WWTPs. These findings shed light on the limited horizontal transfer potential of ARGs in WWTPs and highlight the importance of monitoring specific ARGs in different regions to mitigate the spread of antibiotic resistance.


Assuntos
Antibacterianos , Esgotos , Humanos , Antibacterianos/farmacologia , Esgotos/microbiologia , Genes Bacterianos , Águas Residuárias , Microfluídica , Resistência Microbiana a Medicamentos/genética
8.
Food Funct ; 14(23): 10520-10534, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37946597

RESUMO

The oil of Torreya grandis (TGO), a common nut in China, is considered to be a bioactive edible oil and has a great value in functional food development. In this study, the neuroprotective effects of TGO were investigated on a scopolamine (SCOP)-induced C57BL/6J mouse model. The mice were pretreated with TGO for 30 days (1000 mg per kg per day and 3000 mg per kg per day, i.g.). Behavioral tests showed that the supplementation of TGO could prevent the cognitive deficits induced by SCOP. TGO rebalanced the disorder of the cholinergic system by upgrading the level of acetylcholine. TGO also alleviated the over-activation of microglia and inhibited neuroinflammation and oxidative stress. Additionally, TGO could regulate the composition of gut microbiota, increase the production of short-chain fatty acids, and decrease the content of lipopolysaccharides in the serum. In conclusion, TGO has the potential to prevent loss of memory and impairment of cognition, which may be related to its regulation of the gut microbiota-metabolite-brain axis.


Assuntos
Disfunção Cognitiva , Taxaceae , Camundongos , Animais , Escopolamina/efeitos adversos , Camundongos Endogâmicos C57BL , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Estresse Oxidativo
9.
Artigo em Inglês | MEDLINE | ID: mdl-37815962

RESUMO

With the rise of social media, the rapid spread of rumors online has resulted in numerous negative effects on society and the economy. The methods for rumor detection have attracted great interest from both academia and industry. Given the widespread effectiveness of contrastive learning, many graph contrastive learning models for rumor detection have been proposed by using the event propagation structure as graph data. However, the existing contrastive models usually treat the propagation structure of other events similar to the anchor events as negative samples. While this design choice allows for discriminative learning, on the other hand, it also inevitably pushes apart semantically similar samples and, thus, degrades model performance. In this article, we propose a novel propagation fusion model called propagation structure fusion model based on node-level contrastive learning (PFNC) for rumor detection based on node-level contrastive learning. PFNC first obtains three augmented propagation structures by masking the text of each node in the propagation structure randomly and perturbing some edges in the propagation structure based on the importance of edges. Then, PFNC applies the node-level contrastive learning method between every two augmented propagation structures to prevent the samples with similar propagation structure from far away. Finally, a convolutional neural network (CNN)-based model is proposed to capture the relevant information that is consistent and supplementary among three augmented propagation structures by regarding the propagation structure of the event as a color picture, three augmented propagation structures as color channels, and each node as a pixel. The experimental results on real datasets show that the PFNC significantly outperforms the state-of-the-art models for rumor detection.

10.
Math Biosci Eng ; 20(8): 14699-14717, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37679154

RESUMO

Fake news has already become a severe problem on social media, with substantially more detrimental impacts on society than previously thought. Research on multi-modal fake news detection has substantial practical significance since online fake news that includes multimedia elements are more likely to mislead users and propagate widely than text-only fake news. However, the existing multi-modal fake news detection methods have the following problems: 1) Existing methods usually use traditional CNN models and their variants to extract image features, which cannot fully extract high-quality visual features. 2) Existing approaches usually adopt a simple concatenate approach to fuse inter-modal features, leading to unsatisfactory detection results. 3) Most fake news has large disparity in feature similarity between images and texts, yet existing models do not fully utilize this aspect. Thus, we propose a novel model (TGA) based on transformers and multi-modal fusion to address the above problems. Specifically, we extract text and image features by different transformers and fuse features by attention mechanisms. In addition, we utilize the degree of feature similarity between texts and images in the classifier to improve the performance of TGA. Experimental results on the public datasets show the effectiveness of TGA*. * Our code is available at https://github.com/PPEXCEPED/TGA.

11.
Water Res ; 235: 119892, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36996754

RESUMO

Enriching and detecting the trace pollutants in actual matrices are critical to evaluating the water quality. Herein, a novel nanofibrous membrane, named PAN-SiO2@TpPa, was prepared by in situ growing ß-ketoenamine-linked covalent organic frameworks (COF-TpPa) on the aminated polyacrylonitrile (PAN) nanofibers, and adopted for enriching the trace polychlorinated biphenyls (PCBs) in various natural water body (river, lake and sea water) through the solid-phase micro-extraction (SPME) process. The resulted nanofibrous membrane owned abundant functional groups (-NH-, -OH and aromatic groups), outstandingly thermal and chemical stability, and excellent ability in extracting PCBs congeners. Based on the SPME process, the PCBs congeners could be quantitatively analyzed by the traditional gas chromatography (GC) method, with the satisfactory linear relationship (R2>0.99), low detection limit (LODs, 0.1∼5 ng L-1), high enrichment factors (EFs, 2714∼3949) and multiple recycling (>150 runs). Meanwhile, when PAN-SiO2@TpPa was adopted in the real water samples, the low matrix effects on the enrichment of PCBs at both 5 and 50 ng L-1 over PAN-SiO2@TpPa membrane firmly revealed the feasibility of enriching the trace PCBs in real water. Besides, the related mechanism of extracting PCBs on PAN-SiO2@TpPa mainly involved the synergistic effect of hydrophobic effect, π-π stacking and hydrogen bonding.


Assuntos
Estruturas Metalorgânicas , Nanofibras , Bifenilos Policlorados , Estruturas Metalorgânicas/química , Nanofibras/análise , Dióxido de Silício , Extração em Fase Sólida
12.
Small ; 19(26): e2300230, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36938705

RESUMO

As intelligent microsystems develop, many revolutionary applications, such as the swallowing surgeon proposed by Richard Feynman, are about to evolve. Nonetheless, integrable energy storage satisfying the demand for autonomous operations has emerged as a major obstacle to the deployment of intelligent microsystems. A reason for the lagging development of integrable batteries is the challenge of miniaturization through microfabrication procedures. Lithium batteries, generated by the most successful battery chemistry, are not stable in the air, thus creating major manufacturing challenges. Other cations (Na+ , Mg2+ , Al3+ , K+ ) are still in the early stages of development. In contrast, the superior stability of zinc batteries in the air brings high compatibility to microfabrication protocols and has already demonstrated excellent practicability in full-sized devices. To obtain energy-dense and high-power zinc microbatteries within square-millimeter or smaller footprints, sandwich, pillar, and Swiss-roll configurations are developed. Thin interdigital and fiber microbatteries find their applications being integrated into wearable devices and electronic skin. It is foreseeable that zinc microbatteries will find their way into highly integrated microsystems unlocking their full potential for autonomous operation. This review summarizes the material development, configuration innovation, and application-oriented integration of zinc microbatteries.

13.
Mol Cell Proteomics ; 22(4): 100520, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36842607

RESUMO

Ovarian cancer is a gynecological tumor with extremely high mortality and poor prognosis. Exosomes derived from tumor cells contain abundant proteins that may influence tumor metastasis. The purpose of our study was to explore the proteomic profile of serum exosomes from epithelial ovarian cancer (EOC) patients and to find potential diagnostic markers for EOC. We obtained purified exosomes from serum using ultracentrifugation. Migration assay was used to evaluate the effects of exosomes on the migration of EOC cells. Proteomic profile of serum exosomes was analyzed by liquid chromatogram-tandem mass spectrometry. The levels of low-density lipoprotein receptor-related protein 1 (LRP1) in serum and serum exosomes were determined by enzyme-linked immunosorbent assay. Western blot and Immunohistochemistry were used to determine the level of LRP1 in tissues. Moreover, we performed small-interfering RNA-mediated knockdown of LRP1 in EOC cells to obtain SI-LRP1-Exos and SI-NC-Exos. The detailed mechanisms by which exosomal LRP1 affected the migration of EOC cells in vitro and in vivo were also explored. We found that serum exosomes from EOC patients contributed to the migration of EOC cells. The level of serum exosomal LRP1 of EOC patients was significantly upregulated compared with that of healthy volunteers, which was consistent with the result of enzyme-linked immunosorbent assay. We found that exosomal LRP1 regulated the expression of MMP2 and MMP9 through ERK signaling pathway and affected the migration of EOC cells in vitro and in vivo. Therefore, we propose that exosomal LRP1 contributes to the migration of EOC and may act as an important diagnostic and prognostic biomarker of EOC.


Assuntos
Exossomos , Neoplasias Ovarianas , Humanos , Feminino , Carcinoma Epitelial do Ovário , Exossomos/metabolismo , Proteômica , Neoplasias Ovarianas/patologia , Transdução de Sinais , Linhagem Celular Tumoral , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-35575689

RESUMO

High-electron-mobility group III-V compounds have been regarded as a promising successor to silicon in next-generation field-effect transistors (FETs). Gallium arsenide (GaAs) is an outstanding member of the III-V family due to its advantage of both good n- and p-type device performance. Monolayer (ML) GaAs is the limit form of ultrathin GaAs. Here, a hydrogenated ML GaAs (GaAsH2) FET is simulated by ab initio quantum-transport methods. The n- and p-type ML GaAsH2 metal-oxide-semiconductor FETs (MOSFETs) can well satisfy the on-state current, delay time, power dissipation, and energy-delay product requirements of the International Technology Roadmap for Semiconductors until the gate length is scaled down to 3/4 and 3/5 nm for the high-performance/low-power applications, respectively. Therefore, ultrathin GaAs is a prominent channel candidate for devices in the post-Moore era. The p-type ML GaAsH2 MOSFETs with a 2% uniaxially compressive strain and the unstrained n-type counterparts have symmetrical performance for the high-performance application, making ultrathin GaAs applicable for complementary MOS integrated circuits.

15.
J Hazard Mater ; 424(Pt B): 127455, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34653862

RESUMO

Detecting and analyzing of the trace organochlorine pesticides (OCPs) in the real water has become a big challenge. In this work, a novel functional electrospun nanofiber membrane (PAN@COFs) was synthesized through the in situ growth of covalent organic frameworks (COFs) on a polyacrylonitrile electrospun nanofiber membranes under room temperature and used in the solid-phase micro-extraction (SPME) to enrich trace organochlorine pesticides (OCPs) in water. The resulted PAN@COFs composite consisted of numerous nanofibers coated ample porous COFs spheres (~ 500 nm) and owned stable crystal structure, abundant functional groups, good stability. In addition, the enrichment experiments clearly revealed that PAN@COFs exhibited rather outstanding performance on adsorbing the trace OCPs (as low as 10 ng L-1) with the enrichment of 482-2686 times. Besides, PAN@COFs displayed good reusability and could be reused 100 times. Notably, in the real water samples (sea water and river water), the high enrichment factors and recovery rates strongly confirmed the feasibility of PAN@COFs for detecting the trace OCPs. Furthermore, due to the synergy of π-π stacking interaction and hydrophobic interaction between the OCPs molecules and PAN@COFs, the OCPs could be efficiently adsorbed on PAN@COFs, even under the extremely low driving force.


Assuntos
Hidrocarbonetos Clorados , Estruturas Metalorgânicas , Nanofibras , Praguicidas , Resinas Acrílicas , Hidrocarbonetos Clorados/análise , Praguicidas/análise
16.
J Colloid Interface Sci ; 610: 24-34, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34920214

RESUMO

In this study, the S modified iron-based catalyst (S-Fe@C) for activating peroxydisulfate (PDS) was fabricated by heating the S-MIL-101 (Fe) precursor at 800 °C. The resulted S-Fe@C composite mainly consisted of carbon, Fe0, FeS, FeS2, and Fe3O4, and showed strong magnetism. Compared with Fe@C obtained from MIL-101 (Fe), the S-Fe@C exhibited much higher performance (1.5 times larger) on PDS activation and the S-Fe@C/PDS could rapidly degrade various organic pollutants in 5 min under the attack of the species of SO4-·, 1O2, electro-transfer and Fe(IV). The S element in enhancing the PDS activation mainly involved two mechanisms. Firstly, the doped S could speed up the electron transfer efficiency, resulting in a promotion on PDS decomposition; secondly, the S2- S22- or S0 could achieve the circulation of Fe2+ and Fe3+, leading to the formation of non-radicals Fe(IV) and 1O2.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Catálise , Ferro , Enxofre , Poluentes Químicos da Água/análise
17.
Environ Res ; 207: 112184, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34627800

RESUMO

In this study, a bimetallic composite catalyst (Co-Fe@C) was fabricated with calcination at high temperature (800 °C) by using Co-MIL-101 (Fe) as the precursor. The characterization results showed that the resulted Co-Fe@C composite mainly consisted of carbon, FeCo alloys, Fe3O4, Co3O4 and FeO, and owned evident magnetism. In addition, the Co-Fe@C was employed to activate the peroxydisulfate (PDS) to degrade a representative organic pollutant (p-arsanilic acid, p-ASA) and the main factors were optimized, which involved 0.2 g L-1 of catalyst dosage, 1.0 g L-1 of PDS dosage and 5.0 of initial pH. Under the optimal condition, Co-Fe@C/PDS system could completely degrade p-ASA (20 mg L-1) in 5 min. In the Co-Fe@C/PDS system, SO4-·, Fe(IV) and ·OH were the main species during p-ASA degradation. Under the attack of these species, p-ASA was first decomposed into phenols and then transformed into the organics acids and finally mineralized into CO2 and H2O through a series of reactions like hydroxylation, dearsenification, deamination and benzene ring opening. Importantly, most of the released inorganic arsenic species (93.40%) could be efficiently adsorbed by the catalyst.


Assuntos
Ácido Arsanílico , Arsênio , Catálise , Cobalto , Óxidos
18.
ACS Appl Mater Interfaces ; 13(35): 42024-42034, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34448561

RESUMO

Functionalized materials with reversible color switching are highly attractive in many application fields, especially as rewritable media for information storage. It is critical yet challenging to develop a cost-effective strategy for the fabrication of stimulus-responsive chromogenic systems. Herein, we present a versatile dip-coating approach to fabricate robust smart textile with acid/base-driven chromotropic capability. Owing to the introduction of novel maleimide-based copolymers bearing azobenzene derivative moieties, smart textiles possess rapid color switching between yellow and orange-red, which is triggered by acid-base stimulations with the resulting reversible protonation/deprotonation of maleimide moieties. As a proof of concept of the application of the smart textile for high-performance rewritable media, various rewritable elaborate patterns can be fast trifluoroacetic acid-printed/triethylamine-erased (within 20 s) with excellent cycling stability and long legible duration (>30 days). Meanwhile, the smart textile can be employed as a visual sensor for the detection of hydrogen fluoride gas leakage. It is highlighted that the as-prepared robust smart textiles with superhydrophobic surfaces have excellent antifouling properties and chemical/mechanical stabilities, which can tolerate harsh environmental conditions and repetitive mechanical deformation. The robust smart textiles with simple low-cost large-scale production may find more advanced potential applications besides information storage and sensors demonstrated.

19.
ACS Appl Mater Interfaces ; 13(27): 31957-31967, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34210135

RESUMO

Single-walled carbon nanotubes (CNTs) have been considered as a promising semiconductor to construct transistors and integrated circuits in the future owing to their ultrathin channel thickness and ultrahigh injection velocity. Although a 5 nm gate-length CNT field-effect transistor (FET) has already been experimentally fabricated and demonstrates excellent device performance, the potential or constraint factors on performance have not been explored or revealed. Based on the benchmark of the device performance between the experimental and simulated 5 nm gate-length CNT FETs, we use the first-principles quantum transport approach to explore the performance limit of CNT FETs based on the gate-all-around (GAA) device geometry for the first time. It is found that the GAA CNT FETs can fulfill the ITRS 2028 high-performance target in the 2 nm gate-length node in terms of the on-state current, delay time, and power consumption. We also find that the energy-delay product of the CNT FETs is superior to those of the high-performance 2D materials and Si Fin FETs at the sub-5 nm gate length due to its unique electrical property. Though theoretically the gate length of CNT FETs can be potentially scaled to 2 nm, considering the tradeoff between the performance and power consumption, 5 nm is the ultimate scaled limit.

20.
Nanoscale ; 13(29): 12521-12533, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34263895

RESUMO

Interlayer engineering of graphite anodes in alkali metal ion (M = Li, Na, and K) batteries is carried out based on the first-principles calculations. By increasing the interlayer spacing of graphite, the specific capacity of Li or Na does not increase while that of K increases continuously (from 279 mA h g-1 at the equilibrium interlayer spacing to 1396 mA h g-1 at the interlayer spacing of 20.0 Å). As the interlayer spacing increases, the electrostatic potential of graphite becomes smoother, and the ability to buffer the electrostatic potential fluctuation becomes poorer in M ions. These two effects jointly lead to minima of the diffusion barrier of M ions on graphite (0.01-0.05 eV), instead of strictly monotonous declines with the increasing interlayer spacing. To perform the interlayer engineering of anode candidates more efficiently, a set of high-throughput programs has been developed and can be easily applied to other systems. Our research has guiding significance for achieving the optimal effect in interlayer engineering experimentally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...