Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Chemosphere ; : 142260, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735488

RESUMO

Human activity and industrial production have led to phenol becoming a significant risk factor. The proper treatment of phenol in wastewater is essential. In this study, the utilization of weak magnetic field (WMF) and zero-valent iron (ZVI) was proposed to activate H2O2 to degrade phenol contaminant. The results show that the weak magnetic field has greatly enhanced the reaction rate of ZVI/H2O2 removal of phenol. The removal rates of phenol by ZVI/H2O2/WMF generally decreased with increasing initial pH and phenol concentrations, and firstly increase and then decrease with increasing Fe0 or H2O2 dosage. When the initial pH is 5.0, ZVI concentration of 0.2 g/L, H2O2 concentration of 6 mM, and phenol concentration of 100 mg/L were used, complete removal of phenol can be achieved within 180 min at 25 °C. The degradation process was consistent with the pseudo-first-order kinetic model when the experimental data was fitted. The ZVI/H2O2/WMF process exhibited a 1.05-2.66-fold enhancement in the removal rate of phenol under various conditions, surpassing its counterpart lacking WMF. It was noticed that the presence of 1-5 mM of Ca2+, Mg2+, Cl-, SO42- ions can significantly enhance the kinetics of phenol removal by ZVI/H2O2 system with or without WMF to 2.22-10.40-fold, but NO3- , CO32-, PO43- inhibited the reaction significantly in the following order: PO43-> CO32- >NO3-. Moreover, pre-magnetization for 3 min could enhance the ZVI/H2O2 process which was valuable in treatment of real wastewater. The hydroxyl radical has been identified as the primary radical species responsible for phenol degradation. The presence of WMF accelerates the corrosion rate of ZVI, thereby promoting the release of Fe2+ ions, which in turn induces an increased production of hydroxyl radicals and facilitates phenol degradation. The compounds hydroquinone, benzoquinone, catechol, maleic acid, and CO2 were identified using GC-MS, and degradation pathways were proposed. Employing WMF in combination with various ions like Ca2+, Mg2+, Cl-, SO42- is a novel method, which can enhance oxidation capacity of ZVI/H2O2 and may lead to economic benefit.

2.
Chemosphere ; 357: 142037, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626811

RESUMO

In this study, a new catalyst for catalytic ozonation was obtained by in-situ growth of Mn-Ni3S2 nanosheets on the surface of nickel foam (NF). The full degradation of p-nitrophenol (PNP) was accomplished under optimal conditions in 40 min. The effects of material dosage, ozone dosage, pH and the presence of inorganic anions on the degradation efficiency of PNP were investigated. ESR analysis showed that singlet oxygen (1O2) and superoxide radical (O2•-) are the main contributors of PNP degradation. This study offers a new combination of supported catalysts with high efficiency and easy recovery, which provides a new idea for wastewater treatment.


Assuntos
Manganês , Níquel , Nitrofenóis , Ozônio , Poluentes Químicos da Água , Níquel/química , Nitrofenóis/química , Catálise , Ozônio/química , Manganês/química , Poluentes Químicos da Água/química , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos
5.
Int J Biol Macromol ; 262(Pt 2): 130205, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365148

RESUMO

The degradation of lignin-carbohydrate complex (LCC) esters has been proven to be crucial for the selective separation of lignocellulosic components. This study utilized Raman microspectroscopy to image the preferential degradation of lignin and LCC esters from the bamboo wall during successive NaOH (0.2 to 5.0 % w/w), H2SO4 (1 to 8 % v/v), and NaClO2 (5 to 20 min) treatments. Raman imaging showed that lignin and LCC esters were selectively removed from the middle lamella of fibers and the secondary wall of parenchyma during NaOH and NaClO2 treatments. In contrast, H2SO4 primarily caused the simultaneous removal of lignin and LCC esters from the fiber wall under harsh conditions (8 %), while the middle lamella of parenchyma was less affected, both morphologically and topochemically. Raman spectral analysis indicated that the band intensity at 1605 cm-1 for lignin and at 1173 cm-1 for LCC esters decreased by >87.0 % in the highly lignified parenchyma secondary wall after a 5.0 % NaOH treatment, while the decrease was <67 % in the fiber wall. Interestingly, a strong linear correlation was observed between LCC esters and carbohydrates in the parenchyma (R2 > 0.912). These findings provide important insights into the graded and classified utilization of bamboo resources.


Assuntos
Ésteres , Lignina , Lignina/química , Hidróxido de Sódio , Carboidratos/química , Matriz Extracelular/metabolismo
6.
Plant Sci ; 341: 111999, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307350

RESUMO

Extracellular vesicles (EVs) are membrane-enclosed nanoparticles that have a crucial role in mediating intercellular communication in mammals by facilitating the transport of proteins and small RNAs. However, the study of plant EVs has been limited for a long time due to insufficient isolation and detection methods. Recent research has shown that both plants and plant pathogens can release EVs, which contain various bioactive molecules like proteins, metabolites, lipids, and small RNAs. These EVs play essential roles in plant-microbe interactions by transferring these bioactive molecules across different kingdoms. Additionally, it has been discovered that EVs may contribute to symbiotic communication between plants and pathogens. This review provides a comprehensive summary of the pivotal roles played by EVs in mediating interactions between plants and microbes, including pathogenic fungi, bacteria, viruses, and symbiotic pathogens. We highlight the potential of EVs in transferring immune signals between plant cells and facilitating the exchange of active substances between different species.


Assuntos
Vesículas Extracelulares , Animais , Vesículas Extracelulares/metabolismo , RNA , Comunicação Celular , Plantas , Simbiose , Mamíferos
7.
Molecules ; 29(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338407

RESUMO

Novel bamboo activated carbon (BAC) catalysts decorated with manganese oxides (MnOx) were prepared with varying MnOx contents through a facile one-step redox reaction. Due to the physical anchoring effect of the natural macropore structure for catalyst active components, homogeneous MnOx nanoparticles (NPs), and high specific surface area over catalyst surface, the BAC@MnOx-N (N = 1, 2, 3, 4, 5) catalyst shows encouraging adsorption and catalytic oxidation for indoor formaldehyde (HCHO) removal at room temperature. Dynamic adsorption and catalytic activity experiments were conducted. The higher Smicro (733 m2/g) and Vmicro/Vt (82.6%) of the BAC@MnOx-4 catalyst could facilitate its excellent saturated and breakthrough adsorption capacity (5.24 ± 0.42 mg/g, 2.43 ± 0.22 mg/g). The best performer against 2 ppm HCHO is BAC@MnOx-4 catalyst, exhibiting a maximum HCHO removal efficiency of 97% for 17 h without any deactivation as RH = 0, which is higher than those of other MnOx-based catalysts. The average oxidation state and in situ DRIFTS analysis reveal that abundant oxygen vacancies on the BAC@MnOx-4 catalyst could be identified as surface-active sites of decomposing HCHO into the intermediate species (dioxymethylene and formate). This study provides a potential approach to deposit MnOx nanoparticles onto the BAC surface, and this hybrid BAC@MnOx material is promising for indoor HCHO removal at room temperature.

8.
Int J Biol Macromol ; 264(Pt 1): 130417, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417744

RESUMO

Cellulose-rich straws of corn and rice were torrefied under carbon dioxide, and the fuel characteristics and combustion performance of the obtained biochar were investigated. A high severity resulted in surface collapse, greater pore volume, elimination of oxygen, elevated calorific value, and improved hydrophobicity in biochar. Following carbon dioxide torrefaction, the cellulose content in solid biochar experienced a slight decrease when the temperature was raised to 220 °C for longer residence durations. At 300 °C, the cellulose content in the biochar was nearly eliminated, while the relative proportion of non-sugar organic matter in corn stover and rice straw increased to 87.40 % and 77.27 %, respectively. The maximum calorific values for biochar from corn and rice straws were 22.38 ± 0.03 MJ/kg and 18.72 ± 0.05 MJ/kg. The comprehensive combustion indexes of rice and corn straw samples decreased to 1.06 × 10-7 and 1.31 × 10-7 after torrefaction at 300 °C, respectively. In addition, the initial decomposition temperatures increased by 38 °C and 45 °C, while the ultimate combustion temperatures rose by 13 °C and 16 °C for corn and rice straws, respectively. These results imply an extended combustion timeframe for the torrefied samples.


Assuntos
Dióxido de Carbono , Celulose , Carvão Vegetal , Biomassa , Temperatura
9.
Environ Sci Pollut Res Int ; 30(58): 122393-122404, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37968488

RESUMO

MIL-101(Fe)/WS2 catalyst was composited using a solvothermal method. To study the physical and chemical properties of the composite material, a series of characterizations such as scanning electron microscope (SEM), X-ray diffraction (XRD), and catalytic experiments were carried out. The photocatalysis of the prepared catalyst in the degradation of tetracycline was investigated using persulfate (PS, Na2S2O8) as a cocatalyst under visible light illumination. The above system can remove about 80% of tetracycline within 40 min. After three cyclic experiments, the material showed good recycling. According to material characterization and various experimental results, the enhanced performance of the material was attributed to the reduction of the recombination efficiency of photogenerated e- and h+, and activated persulfate to produce a large number of free radicals such as O2•-, SO4•- and 1O2 produced by the active sites provided by the catalyst's high specific surface area.


Assuntos
Antibacterianos , Estruturas Metalorgânicas , Antibacterianos/química , Tetraciclina/química , Luz , Catálise
10.
Acta Biomater ; 169: 641-660, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541605

RESUMO

Zinc (Zn) and its alloys are used in bone-fixation devices as biodegradable bone-implant materials due to their good biosafety, biological function, biodegradability, and formability. Unfortunately, the clinical application of pure Zn is hindered by its insufficient mechanical properties and slow degradation rate. In this study, a Zn-5 wt.% lanthanum (Zn-5La) alloy with enhanced mechanical properties, suitable degradation rate, and cytocompatibility was developed through La alloying and hot extrusion. The hot-extruded (HE) Zn-5La alloy showed ultimate tensile strength of 286.3 MPa, tensile yield strength of 139.7 MPa, elongation of 35.7%, compressive yield strength of 262.7 MPa, and microhardness of 109.7 HV. The corrosion resistance of the HE Zn-5La in Hanks' and Dulbecco's modified Eagle medium (DMEM) solutions gradually increased with prolonged immersion time. Further, the HE Zn-5La exhibited an electrochemical corrosion rate of 36.7 µm/y in Hanks' solution and 11.4 µm/y in DMEM solution, and a degradation rate of 49.5 µm/y in Hanks' solution and 30.3 µm/y in DMEM solution, after 30 d of immersion. The corrosion resistance of both HE Zn and Zn-5La in DMEM solution was higher than in Hanks' solution. The 25% concentration extract of the HE Zn-5La showed a cell viability of 106.5%, indicating no cytotoxicity toward MG-63 cells. We recommend the HE Zn-5La alloy as a promising candidate material for biodegradable bone-implant applications. STATEMENT OF SIGNIFICANCE: This work reports the mechanical properties, corrosion and degradation behaviors, in vitro cytocompatibility and antibacterial ability of biodegradable Zn-5La alloy for bone-implant applications. Our findings demonstrate that the hot-extruded (HE) Zn-5La alloy showed an ultimate tensile strength of 286.3 MPa, a yield strength of 139.7 MPa, an elongation of 35.7%, compressive yield strength of 262.7 MPa, and microhardness of 109.7 HV. HE Zn-5La exhibited appropriate degradation rates in Hanks' and DMEM solutions. Furthermore, the HE Zn-5La alloy showed good cytocompatibility toward MG-63 and MC3T3-E1 cells and greater antibacterial ability against S. aureus.


Assuntos
Ligas , Zinco , Teste de Materiais , Ligas/farmacologia , Ligas/química , Corrosão , Zinco/farmacologia , Zinco/química , Staphylococcus aureus , Implantes Absorvíveis , Antibacterianos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química
11.
Med Sci Monit ; 29: e939858, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37608539

RESUMO

BACKGROUND Patients experience severe pain in early postoperative rehabilitation after total knee arthroplasty (TKA). This study aimed to compare the effect of femoral nerve block with different concentrations of chloroprocaine on postoperative rehabilitation in patients with TKA. MATERIAL AND METHODS Ninety patients who only received unilateral TKA were randomly and equally divided into C1 (1% chloroprocaine 0.2 ml/kg), C2 (2% chloroprocaine 0.2 ml/kg), or NS (0.9% sodium chloride solution 0.2 ml/kg) groups. The patients received rehabilitation 3 times a day on days 3-6 after surgery, and femoral nerve block was performed with corresponding solution 10 min before each training session. We recorded the maximum knee flexion angles (MKFA) and maximum knee extension angles (MKEA) during active exercise on day 7 after surgery, as well as the incidence of MKFA ³100°, American knee society (AKS) scores, and postoperative rehabilitation satisfaction. Adverse effects after administration in each group were also recorded. RESULTS Compared with group NS, patients in group C1 and C2 had larger MKFA during active exercise on day 7 after TKA, and had better rehabilitation satisfaction (P<0.05). MKEA, the incidence of MKFA ≥100°, and AKS scores showed no significant differences in the 3 groups. There were more patients with decline of muscle strength in group C2 (P<0.05), and no other adverse reactions were recorded. CONCLUSIONS Chloroprocaine for femoral nerve block can be safely used in rehabilitation after TKA and to improve the knee flexion angle in the early postoperative period. Because they may have fewer adverse effects, 1% chloroprocaine 0.2 ml/kg may be preferred.


Assuntos
Artroplastia do Joelho , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Nervo Femoral , Procaína/uso terapêutico , Articulação do Joelho/cirurgia
12.
Genes (Basel) ; 14(7)2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37510277

RESUMO

microRNAs are a class of small RNAs that have been extensively studied, which are involved in many biological processes and disease occurrence. The incidence of intrauterine growth restriction is higher in mammals, especially multiparous mammals. In this study, we found that the weight of the longissimus dorsi of intrauterine growth-restricted pigs was significantly lower than that of normal pigs. Then, intrauterine growth-restricted pig longissimus dorsi were used to characterize miRNA expression profiles by RNA sequencing. A total of 333 miRNAs were identified, of which 26 were differentially expressed. Functional enrichment analysis showed that these differentially expressed miRNAs regulate the expression of their target genes (such as PIK3R1, CCND2, AKT3, and MAP3K7), and these target genes play an important role in the proliferation and differentiation of skeletal muscle through signaling pathways such as the PI3K-Akt, MAPK, and FoxO signaling pathways. Furthermore, miRNA-451 was significantly upregulated in IUGR pig skeletal muscle. Overexpression of miR-451 in C2C12 cells significantly promoted the expression of Mb, Myod, Myog, Myh1, and Myh7, suggesting that miR-451 may be involved in the regulation of the myoblastic differentiation of C2C12 cells. Our results reveal the role of miRNA-451 in regulating myogenic differentiation of skeletal muscle in pigs with intrauterine growth restriction.


Assuntos
MicroRNAs , Humanos , Feminino , Suínos/genética , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais/genética , Mamíferos/genética
13.
Biosensors (Basel) ; 13(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37504144

RESUMO

As a "gold standard biomarker", cardiac troponin I (cTnI) is widely used to diagnose acute myocardial infarction (AMI). For an early clinical diagnosis of AMI, it is necessary to develop a facile, fast and on-site device for cTnI detection. According to this demand, a point-of-care electrochemical aptasensor was developed for cTnI detection by coupling the advantages of screen-printed carbon electrode (SPCE) with those of an aptamer. Thiol and methylene blue (MB) co-labelled aptamer (MB-Apt-SH) was assembled on the surface of hierarchical flower-like gold nanostructure (HFGNs)-decorated SPCE (SPCE-HFGNs) to recognize and analyze cTnI. In the presence of cTnI, the specific biological recognition reaction between cTnI and aptamer caused the decrease in electrochemical signal. Under the optimal condition, this designed aptasensor showed wide linear range (10 pg/mL-100 ng/mL) and low detection limit for (8.46 pg/mL) for cTnI detection with high selectivity and stability. More importantly, we used a mobile phone coupled with a simple APP to efficiently detect cTnI in 10 µL 100% human serum samples, proving that this aptasensor has a promising potential in point-of-care testing.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Infarto do Miocárdio , Humanos , Limite de Detecção , Troponina I , Sistemas Automatizados de Assistência Junto ao Leito , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas , Carbono/química , Infarto do Miocárdio/diagnóstico
14.
J Agric Food Chem ; 71(25): 9796-9803, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37310072

RESUMO

Lignin-carbohydrate complexes (LCCs) are regarded as a barrier for lignocellulosic biomass refinery. Here, confocal Raman microspectroscopy has been used to visualize the dissolution of hydroxycinnamates (HCMs) incorporated into LCCs by ether and ester bonds for energy crops Miscanthus sinensis cv. during successive NaOH (2.5% w/w) treatment. Raman spectral analysis indicated that mild NaOH treatment resulted in a higher proportion of HCM depolymerization in highly lignified middle lamella areas (>66.0%) than carbohydrate-abundant secondary walls. Furthermore, Raman imaging revealed preferential depolymerization of lignin from the sclerenchyma fiber (Sf) and parenchyma (Par) secondary wall with an increment of treatment time from 0 to 25 min, while middle lamella areas of Sf and Par were less affected where the depolymerization of HCMs was closely related with that of lignin (coefficient factors > 0.96). A better understanding of the depolymerization behavior for HCMs accompanied by lignin depolymerization was important to break LCC bonds in herbaceous biomass efficiently.


Assuntos
Carboidratos , Lignina , Lignina/química , Hidróxido de Sódio/análise , Carboidratos/química , Poaceae , Parede Celular/química
15.
J Supercomput ; : 1-25, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37359339

RESUMO

As a popular platform-independent language, Java is widely used in enterprise applications. In the past few years, language vulnerabilities exploited by Java malware have become increasingly prevalent, which cause threats for multi-platform. Security researchers continuously propose various approaches for fighting against Java malware programs. The low code path coverage and poor execution efficiency of dynamic analysis limit the large-scale application of dynamic Java malware detection methods. Therefore, researchers turn to extracting abundant static features to implement efficient malware detection. In this paper, we explore the direction of capturing malware semantic information by using graph learning algorithms and present BejaGNN (Behavior-based Java malware detection via Graph Neural Network), a novel behavior-based Java malware detection method using static analysis, word embedding technique, and graph neural network. Specifically, BejaGNN leverages static analysis techniques to extract ICFGs (Inter-procedural Control Flow Graph) from Java program files and then prunes these ICFGs to remove noisy instructions. Then, word embedding techniques are adopted to learn semantic representations for Java bytecode instructions. Finally, BejaGNN builds a graph neural network classifier to determine the maliciousness of Java programs. Experimental results on a public Java bytecode benchmark demonstrate that BejaGNN achieves high F1 98.8% and is superior to existing Java malware detection approaches, which verifies the promise of graph neural network in Java malware detection.

16.
Front Genet ; 14: 1213907, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323665

RESUMO

Background: With the rapid development of high-throughput sequencing technology and the explosive growth of genomic data, storing, transmitting and processing massive amounts of data has become a new challenge. How to achieve fast lossless compression and decompression according to the characteristics of the data to speed up data transmission and processing requires research on relevant compression algorithms. Methods: In this paper, a compression algorithm for sparse asymmetric gene mutations (CA_SAGM) based on the characteristics of sparse genomic mutation data was proposed. The data was first sorted on a row-first basis so that neighboring non-zero elements were as close as possible to each other. The data were then renumbered using the reverse Cuthill-Mckee sorting technique. Finally the data were compressed into sparse row format (CSR) and stored. We had analyzed and compared the results of the CA_SAGM, coordinate format (COO) and compressed sparse column format (CSC) algorithms for sparse asymmetric genomic data. Nine types of single-nucleotide variation (SNV) data and six types of copy number variation (CNV) data from the TCGA database were used as the subjects of this study. Compression and decompression time, compression and decompression rate, compression memory and compression ratio were used as evaluation metrics. The correlation between each metric and the basic characteristics of the original data was further investigated. Results: The experimental results showed that the COO method had the shortest compression time, the fastest compression rate and the largest compression ratio, and had the best compression performance. CSC compression performance was the worst, and CA_SAGM compression performance was between the two. When decompressing the data, CA_SAGM performed the best, with the shortest decompression time and the fastest decompression rate. COO decompression performance was the worst. With increasing sparsity, the COO, CSC and CA_SAGM algorithms all exhibited longer compression and decompression times, lower compression and decompression rates, larger compression memory and lower compression ratios. When the sparsity was large, the compression memory and compression ratio of the three algorithms showed no difference characteristics, but the rest of the indexes were still different. Conclusion: CA_SAGM was an efficient compression algorithm that combines compression and decompression performance for sparse genomic mutation data.

17.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240155

RESUMO

Spermatogenesis is temperature-dependent, and the increase in testicular temperature seriously affects mammalian spermatogenesis and semen quality. In this study, the testicular heat stress model of mice was made with a 43 °C water bath for 25 min, and the effects of heat stress on semen quality and spermatogenesis-related regulators were analyzed. On the 7th day after heat stress, testis weight shrank to 68.45% and sperm density dropped to 33.20%. High-throughput sequencing analysis showed that 98 microRNAs (miRNAs) and 369 mRNAs were down-regulated, while 77 miRNAs and 1424 mRNAs were up-regulated after heat stress. Through gene ontology (GO) analysis of differentially expressed genes and miRNA-mRNA co-expression networks, it was found that heat stress may be involved in the regulation of testicular atrophy and spermatogenesis disorders by affecting cell meiosis process and cell cycle. In addition, through functional enrichment analysis, co-expression regulatory network, correlation analysis and in vitro experiment, it was found that miR-143-3p may be a representative potential key regulatory factor affecting spermatogenesis under heat stress. In summary, our results enrich the understanding of miRNAs in testicular heat stress and provide a reference for the prevention and treatment of heat-stress-induced spermatogenesis disorders.


Assuntos
MicroRNAs , Testículo , Masculino , Animais , Camundongos , Testículo/metabolismo , MicroRNAs/metabolismo , Análise do Sêmen , Sêmen/metabolismo , Espermatogênese/genética , Mamíferos/metabolismo
18.
Chemosphere ; 328: 138546, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37019395

RESUMO

Mxene-based catalysts with specific interfacial characteristics are beneficial for photocatalytic applications. Herein, Ti3C2 MXene modified ZnFe2O4 nanocomposite materials were prepared for photocatalysis. The morphology and structure of the nanocmposites were characterized by scanning electron microscopy (SEM), High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), which revealed that Ti3C2 MXene as quantum dots (QDs) was uniformly distributed on the ZnFe2O4 surface. The Ti3C2 QDs modified ZnFe2O4 catalyst (ZnFe2O4/MXene-15%) under visible light achieved 87% degradation efficiency of tetracycline within 60 min when coupled with persulfate (PS) system. The initial solution pH, PS dosage and co-existing ions were found to be the main factors affecting the heterogeneous oxidation process, while quenching experiments showed that O2•- is the main oxidizing species in the removal of tetracycline in ZnFe2O4/MXene-PS system. In addition, the cyclic experiments suggested that ZnFe2O4/MXene had good stability and thus it may have practical applications in industry.


Assuntos
Pontos Quânticos , Titânio , Titânio/química , Antibacterianos/química , Tetraciclina/química
19.
J Nanobiotechnology ; 21(1): 83, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894941

RESUMO

In this study, exosomes from cooked meat were extracted by ultra-high-speed centrifugation. Approximately 80% of exosome vesicles were within 20-200 nm. In addition, the surface biomarkers of isolated exosomes were evaluated using flow cytometry. Further studies showed the exosomal microRNA profiles were different among cooked porcine muscle, fat and liver. Cooked pork-derived exosomes were chronically administered to ICR mice by drinking for 80 days. The mice plasma levels of miR-1, miR-133a-3p, miR-206 and miR-99a were increased to varying degrees after drinking exosome enriched water. Furthermore, GTT and ITT results confirmed an abnormal glucose metabolism and insulin resistance in mice. Moreover, the lipid droplets were significantly increased in the mice liver. A transcriptome analysis performed with mice liver samples identified 446 differentially expressed genes (DEGs). Functional enrichment analysis found that DEGs were enriched in metabolic pathways. Overall, the results suggest that microRNAs derived form cooked pork may function as a critical regulator of metabolic disorder in mice.


Assuntos
Exossomos , MicroRNAs , Carne de Porco , Carne Vermelha , Camundongos , Animais , Suínos , MicroRNAs/metabolismo , Exossomos/metabolismo , Camundongos Endogâmicos ICR
20.
Biotechnol Genet Eng Rev ; : 1-17, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36999778

RESUMO

Tumor imaging represents an ideal environment for collecting novel biomarkers from different technologies, as patients with tumors often undergo multiple imaging studies.With the aging of the Chinese population, the number of elderly patients with gastric cancer is also increasing. In the past, patients with gastric cancer in the elderly have been conservative in whether surgical treatment can be performed, and advanced age is regarded as a relative contraindication to the effect of surgical treatment on gastric cancer patients. To investigate the clinical characteristics of patients with upper gastrointestinal hemorrhage complicated by deep vein thrombosis in elderly patients with gastric cancer. One patient with upper gastrointestinal hemorrhage complicated by deep venous thrombosis, and elderly gastric cancer patients admitted to our hospital on 11 October 2020, were selected. After anti-shock symptomatic support, filter placement, prevention and treatment of thrombosis, gastric cancer eradication, anticoagulation, immune regulation, etc. Treatment and long-term follow-up observation. Long-term follow-up showed that the patient's condition was stable, there was no sign of metastasis or recurrence after radical gastrectomy for gastric cancer, and there were no serious pre- and post-operative complications such as upper gastrointestinal bleeding and deep vein thrombosis, and the prognosis was satisfactory. How to choose the appropriate operation timing and method for elderly gastric cancer patients with upper gastrointestinal bleeding and deep vein thrombosis at the same time to maximize benefits, clinical experience in this area is particularly valuable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...