Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Musculoskelet Disord ; 25(1): 791, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375626

RESUMO

BACKGROUND: Postmenopausal osteoporosis (PMO) results from a reduction in bone mass and microarchitectural deterioration in bone tissue due to estrogen deficiency, which may increase the incidence of fragility fractures. In recent years, the "gut-immune response-bone" axis has been proposed as a novel potential approach in the prevention and treatment of PMO. Studies on ovariectomized murine model indicated the reciprocal role of Th17 cells and Treg cells in the aetiology of osteoporosis. However, the relationship among gut microbiota, immune cells and bone metabolic indexes remains unknown in PMO. METHODS: A total of 77 postmenopausal women were recruited for the study and divided into control (n = 30), osteopenia (n = 19), and osteoporosis (n = 28) groups based on their T score. The frequency of Treg and Th17 cells in lymphocytes were analyzed by flow cytometry. The serum levels of interleukin (IL)-10, 17 A, 1ß, 6, tumor necrosis factor (TNF)-α, and lipopolysaccharide (LPS) were determined via enzyme-linked immunosorbent assay. Additionally, 16S rRNA gene V3-V4 region sequencing analysis was performed to investigate the gut microbiota of the participants. RESULTS: The results demonstrated decreased bacterial richness and diversed intestinal composition in PMO. In addition, significant differences of relative abundance of the gut microbial community in phylum and genus levels were found, mainly including increased Bacteroidota, Proteobacteria, and Campylobacterota, as well as reduced Firmicutes, Butyricicoccus, and Faecalibacterium. Intriugingly, in the osteoporosis group, the concentration of Treg cells and associated IL-10 in peripheral circulation was negatively regulated, while other chronic systemic proinflammatory cytokines and Th17 cells showed opposite trends. Moreover, significantly elevated plasma lipopolysaccharide (LPS) in patients with osteoporosis indicated that disrupted intestinal integrity and permeability. A correlation analysis showed close relationships between gut bacteria and inflammation. CONCLUSIONS: Collectively, these observations will lead to a better understanding of the relationship among bone homeostasis, the microbiota, and circulating immune cells in PMO. The elevated LPS levels of osteoporosis patients which not only indicate a breach in intestinal integrity but also suggest a novel biomarker for assessing osteoporosis risk linked to gut health.


Assuntos
Microbioma Gastrointestinal , Osteoporose Pós-Menopausa , Linfócitos T Reguladores , Células Th17 , Humanos , Feminino , Microbioma Gastrointestinal/imunologia , Pessoa de Meia-Idade , Osteoporose Pós-Menopausa/imunologia , Osteoporose Pós-Menopausa/microbiologia , Osteoporose Pós-Menopausa/sangue , Idoso , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Movimento Celular , Citocinas/sangue , Pós-Menopausa/imunologia
2.
Int Immunopharmacol ; 142(Pt A): 113047, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39236458

RESUMO

BACKGROUND: Schizophrenia (SCZ) is a heterogeneous psychiatric disorder that is poorly treated by current therapies. Emerging evidence indicates that SCZ is closely correlated with a persistent neuroinflammation. α-linolenic acid (ALA) is highly concentrated in the brain and represents a modulator of the immune system by decreasing the inflammatory response in chronic metabolic diseases. This study was first designed to investigate the potential role of dietary ALA on cognitive function and neuroinflammation in mice with SCZ. METHODS: In vivo, after 2 weeks of modeling, mice were treated with dietary ALA treatment for 6 weeks. In vitro, inflammation model was created using lipopolysaccharide as an inducer in BV2 microglial cells. RESULTS: Our results demonstrated that ALA alleviated cognitive impairment and enhanced synaptic plasticity in mice with SCZ. Moreover, ALA mitigated systematic and cerebral inflammation through elevating IL-10 and inhibiting IL-1ß, IL-6, IL-18 and TNF-α. Furthermore, ALA notably inhibited microglia and pro-inflammatory monocytes, as well as microglial activation andpolarization. Mechanistically, ALA up-regulated the expressions of G protein coupled receptor (GPR) 120 and associated ß-inhibitor protein 2 (ß-arrestin2), accompanied by observable weakened levels of transforming growth factor-ß activated kinase 1 (TAK1), NF-κB p65, cysteine proteinase-1 (caspase-1), pro-caspase-1, associated speck-like protein (ASC) and NLRP3. In vitro, ALA directly restrained the inflammation of microglia by decreasing the levels of pro-inflammatory factors and regulating microglial polarization via GPR120-NF-κB/NLRP3inflammasome signaling pathway, whereas AH7614 definitely eliminated this anti-inflammatory effect of ALA. CONCLUSION: Dietary ALA ameliorates microglia-mediated neuroinflammation by suppressing the NF-κB/NLRP3 pathway via binding GPR120-ß-arrestin2.


Assuntos
Camundongos Endogâmicos C57BL , Microglia , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptores Acoplados a Proteínas G , Esquizofrenia , Transdução de Sinais , Ácido alfa-Linolênico , beta-Arrestina 2 , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , beta-Arrestina 2/metabolismo , Ácido alfa-Linolênico/farmacologia , Ácido alfa-Linolênico/uso terapêutico , Receptores Acoplados a Proteínas G/metabolismo , NF-kappa B/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Masculino , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/imunologia , Linhagem Celular , Modelos Animais de Doenças , Citocinas/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Humanos
3.
BMC Microbiol ; 24(1): 97, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521894

RESUMO

BACKGROUND: Primary nephrotic syndrome (PNS) is a common glomerular disease in children. Clostridium butyricum (C. butyricum), a probiotic producing butyric acid, exerts effective in regulating inflammation. This study was designed to elucidate the effect of C. butyricum on PNS inflammation through the gut-kidney axis. METHOD: BALB/c mice were randomly divided into 4 groups: normal control group (CON), C. butyricum control group (CON+C. butyricum), PNS model group (PNS), and PNS with C. butyricum group (PNS+C. butyricum). The PNS model was established by a single injection of doxorubicin hydrochloride (DOX) through the tail vein. After 1 week of modeling, the mice were treated with C. butyricum for 6 weeks. At the end of the experiment, the mice were euthanized and associated indications were investigated. RESULTS: Since the successful modeling of the PNS, the 24 h urine protein, blood urea nitrogen (BUN), serum creatinine (SCr), urine urea nitrogen (UUN), urine creatinine (UCr), lipopolysaccharides (LPS), pro-inflammatory interleukin (IL)-6, IL-17A were increased, the kidney pathological damage was aggravated, while a reduction of body weights of the mice and the anti-inflammatory IL-10 significantly reduced. However, these abnormalities could be dramatically reversed by C. butyricum treatment. The crucial Th17/Tregs axis in PNS inflammation also was proved to be effectively regulated by C. butyricum treatment. This probiotic intervention notably affected the expression levels of signal transducer and activator of transcription 3 (STAT3), Heme oxygenase-1 (HO-1) protein, and retinoic acid-related orphan receptor gamma t (RORγt). 16S rRNA sequencing showed that C. butyricum could regulate the composition of the intestinal microbial community and found Proteobacteria was more abundant in urine microorganisms in mice with PNS. Short-chain fatty acids (SCFAs) were measured and showed that C. butyricum treatment increased the contents of acetic acid, propionic acid, butyric acid in feces, acetic acid, and valeric acid in urine. Correlation analysis showed that there was a closely complicated correlation among inflammatory indicators, metabolic indicators, microbiota, and associated metabolic SCFAs in the gut-kidney axis. CONCLUSION: C. butyricum regulates Th17/Tregs balance via the gut-kidney axis to suppress the immune inflammatory response in mice with PNS, which may potentially contribute to a safe and inexpensive therapeutic agent for PNS.


Assuntos
Clostridium butyricum , Síndrome Nefrótica , Humanos , Criança , Camundongos , Animais , RNA Ribossômico 16S , Inflamação , Rim , Ácidos Graxos Voláteis , Butiratos , Interleucina-6 , Acetatos
4.
Int Immunopharmacol ; 131: 111852, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38492338

RESUMO

BACKGROUND: We recently found that butyrate could ameliorate inflammation of alcoholic liver disease (ALD) in mice. However, the exact mechanism remains incompletely comprehended. Here, we examined the role of butyrate on ALD-associated inflammation through macrophage (Mψ) regulation and polarization using in vivo and in vitro experiments. METHODS: For in vivo experiments, C57BL/6J mice were fed modified Lieber-DeCarli liquid diets supplemented with or without ethanol and sodium butyrate (NaB). After 6 weeks of treatment, mice were euthanized and associated indicators were analyzed. For in vitro experiments, lipopolysaccharide (LPS)-induced inflammatory murine RAW264.7 cells were treated with NaB or miR-155 inhibitor/mimic to verify the anti-inflammatory effect and underlying mechanism. RESULTS: The administration of NaB alleviated pathological damage and associated inflammation, including LPS, tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1ß levels in ALD mice. NaB intervention restored the imbalance of macrophage polarization by inhibiting inducible nitric oxide synthase (iNOS) and elevating arginase-1 (Arg-1). Moreover, NaB reduced histone deacetylase-1 (HDAC1), nuclear factor kappa-B (NF-κB), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), and miR-155 expression in ALD mice, but also increased peroxisome proliferator-activated receptor-γ (PPAR-γ). Thus, MiR-155 was identified as a strong regulator of ALD. To further penetrate the role of miR-155, LPS-stimulated RAW264.7 cells co-cultured with NaB were treated with the specific inhibitor or mimic. Intriguingly, miR-155 was capable of negatively regulated inflammation with NaB intervention by targeting SOCS1, SHIP1, and IRAK-M genes. CONCLUSION: Butyrate suppresses the inflammation in mice with ALD by regulating macrophage polarization via the HDAC1/miR-155 axis, which may potentially contribute to the novel therapeutic treatment for the disease.


Assuntos
Hepatite Alcoólica , Hepatopatias Alcoólicas , MicroRNAs , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Hepatopatias Alcoólicas/patologia , Inflamação/metabolismo , Macrófagos , Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , Ácido Butírico/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , MicroRNAs/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA