Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Cardiovasc Magn Reson ; 25(1): 40, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474977

RESUMO

Hemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate assessment of flow in a single acquisition. This consensus paper is an update from the 2015 '4D Flow CMR Consensus Statement'. We elaborate on 4D Flow CMR sequence options and imaging considerations. The document aims to assist centers starting out with 4D Flow CMR of the heart and great vessels with advice on acquisition parameters, post-processing workflows and integration into clinical practice. Furthermore, we define minimum quality assurance and validation standards for clinical centers. We also address the challenges faced in quality assurance and validation in the research setting. We also include a checklist for recommended publication standards, specifically for 4D Flow CMR. Finally, we discuss the current limitations and the future of 4D Flow CMR. This updated consensus paper will further facilitate widespread adoption of 4D Flow CMR in the clinical workflow across the globe and aid consistently high-quality publication standards.


Assuntos
Sistema Cardiovascular , Humanos , Velocidade do Fluxo Sanguíneo , Valor Preditivo dos Testes , Coração , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
2.
Magn Reson Med ; 87(4): 1923-1937, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34783383

RESUMO

PURPOSE: The purpose of this study was to evaluate the accuracy of four-dimensional (4D) flow MRI for direct assessment of peak velocity, flow volume, and momentum of a mitral regurgitation (MR) flow jets using an in vitro pulsatile jet flow phantom. We systematically investigated the impact of spatial resolution and quantification location along the jet on flow quantities with Doppler ultrasound as a reference for peak velocity. METHODS: Four-dimensional flow MRI data of a pulsatile jet through a circular, elliptical, and 3D-printed patient-specific MR orifice model was acquired with varying spatial resolution (1.5-5 mm isotropic voxel). Flow rate and momentum of the jet were quantified at various axial distances (x = 0-50 mm) and integrated over time to calculate Voljet and MTIjet . In vivo assessment of Voljet and MTIjet was performed on 3 MR patients. RESULTS: Peak velocities were comparable to Doppler ultrasound (3% error, 1.5 mm voxel), but underestimated with decreasing spatial resolution (-40% error, 5 mm voxel). Voljet was similar to regurgitant volume (RVol) within 5 mm, and then increased linearly with the axial distance (19%/cm) because of flow entrainment. MTIjet remained steady throughout the jet (2%/cm) as theoretically predicted. Four and 9 voxels across the jet were required to measure flow volume and momentum-time-integral within 10% error, respectively. CONCLUSION: Four-dimensional flow MRI detected accurate peak velocity, flow rate, and momentum for in vitro MR-mimicking flow jets. Spatial resolution significantly impacted flow quantitation, which otherwise followed predictions of flow entrainment and momentum conservation. This study provides important preliminary information for accurate in vivo MR assessment using 4D flow MRI.


Assuntos
Doenças das Valvas Cardíacas , Insuficiência da Valva Mitral , Velocidade do Fluxo Sanguíneo , Humanos , Imageamento por Ressonância Magnética , Insuficiência da Valva Mitral/diagnóstico por imagem , Fluxo Pulsátil , Ultrassonografia
4.
NMR Biomed ; 33(5): e4240, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31977117

RESUMO

Retrospective electrocardiogram-gated, 2D phase-contrast (PC) flow MRI is routinely used in clinical evaluation of valvular/vascular disease in pediatric patients with congenital heart disease (CHD). In patients not requiring general anesthesia, clinical standard PC is conducted with free breathing for several minutes per slice with averaging. In younger patients under general anesthesia, clinical standard PC is conducted with breath-holding. One approach to overcome this limitation is using either navigator gating or self-navigation of respiratory motion, at the expense of lengthening scan times. An alternative approach is using highly accelerated, free-breathing, real-time PC (rt-PC) MRI, which to date has not been evaluated in CHD patients. The purpose of this study was to develop a 38.4-fold accelerated 2D rt-PC pulse sequence using radial k-space sampling and compressed sensing with 1.5 × 1.5 × 6.0 mm3 nominal spatial resolution and 40 ms nominal temporal resolution, and evaluate whether it is capable of accurately measuring flow in 17 pediatric patients (aortic valve, pulmonary valve, right and left pulmonary arteries) compared with clinical standard 2D PC (either breath-hold or free breathing). For clinical translation, we implemented an integrated reconstruction pipeline capable of producing DICOMs of the order of 2 min per time series (46 frames). In terms of association, forward volume, backward volume, regurgitant fraction, and peak velocity at peak systole measured with standard PC and rt-PC were strongly correlated (R2 > 0.76; P < 0.001). Compared with clinical standard PC, in terms of agreement, forward volume (mean difference = 1.4% (3.0% of mean)) and regurgitant fraction (mean difference = -2.5%) were in good agreement, whereas backward volume (mean difference = -1.1 mL (28.2% of mean)) and peak-velocity at peak systole (mean difference = -21.3 cm/s (17.2% of mean)) were underestimated by rt-PC. This study demonstrates that the proposed rt-PC with the said spatial resolution and temporal resolution produces relatively accurate forward volumes and regurgitant fractions but underestimates backward volumes and peak velocities at peak systole in pediatric patients with CHD.


Assuntos
Algoritmos , Cardiopatias Congênitas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Criança , Eletrocardiografia , Estudos de Viabilidade , Feminino , Humanos , Modelos Lineares , Masculino , Imagens de Fantasmas
5.
Radiol Cardiothorac Imaging ; 2(6): e200219, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33385164

RESUMO

PURPOSE: To implement, validate, and apply a self-gated free-running whole-heart five-dimensional (5D) flow MRI framework to evaluate respiration-driven effects on three-dimensional (3D) hemodynamics in a clinical setting. MATERIALS AND METHODS: In this prospective study, a free-running five-dimensional (5D) flow sequence was implemented with 3D radial sampling, self-gating, and a compressed-sensing reconstruction. The 5D flow was evaluated in a pulsatile phantom and adult participants with aortic and/or valvular disease who were enrolled between May and August 2019. Conventional twofold-accelerated four-dimensional (4D) flow of the thoracic aorta with navigator gating was performed as a reference comparison. Continuous parameters were evaluated for parameter normality and were compared between conventional 4D flow and 5D flow using a signed-rank or two-tailed paired t test. Differences between respiratory states were evaluated using a repeated-measure analysis of variance or a nonparametric Friedman test. RESULTS: A total of 20 adult participants (mean age, 49 years ± 17 [standard deviation]; 18 men and two women) were included. In vitro 5D flow results showed excellent agreement with conventional 4D flow-derived values (peak and net flow, <7% difference over all quantified planes). Whole-heart 5D flow data were collected in all participants in 7.65 minutes ± 0.35 (acceleration rate = 36.0-76.9) versus 9.88 minutes ± 3.17 for conventional aortic 4D flow. In vivo, 5D flow demonstrated moderate agreement with conventional 4D flow but demonstrated overestimation in net flow and peak velocity (up to 26% and 12%, respectively) in the ascending aorta and underestimation (<12%) in the arch and descending aorta. Respiratory-resolved analyses of caval veins showed significantly increased net and peak flow in the inferior vena cava in end inspiration compared with end expiration, and the opposite trend was shown in the superior vena cava. CONCLUSION: A free-running 5D flow MRI framework consistently captured cardiac and respiratory motion-resolved 3D hemodynamics in less than 8 minutes. Supplemental material is available for this article. © RSNA, 2020.

6.
Magn Reson Med ; 83(2): 505-520, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31423646

RESUMO

PURPOSE: To evaluate the utility of an efficient triple velocity-encoding (VENC) 4D flow MRI implementation to improve velocity unwrapping of 4D flow MRI data with the same scan time as an interleaved dual-VENC acquisition. METHODS: A balanced 7-point acquisition was used to derive 3 sets of 4D flow images corresponding to 3 different VENCs. These 3 datasets were then used to unwrap the aliased lowest VENC into a minimally aliased, triple-VENC dataset. Triple-VENC MRI was evaluated and compared with dual-VENC MRI over 3 different VENC ranges (50-150, 60-150, and 60-180 cm/s) in vitro in a steadily rotating phantom as well as in a pulsatile flow phantom. In vivo, triple-VENC data of the thoracic aorta were also evaluated in 3 healthy volunteers (2 males, 26-44 years old) with VENC = 50/75/150 cm/s. Two triple-VENC (triconditional and biconditional) and 1 dual-VENC unwrapping algorithms were quantitatively assessed through comparison to a reference, unaliased, single-VENC scan. RESULTS: Triple-VENC 4D flow constant rotation phantom results showed high correlation with the analytical solution (intraclass correlation coefficient = 0.984-0.995, P < .001) and up to a 61% reduction in velocity noise compared with the corresponding single-VENC scans (VENC = 150, 180 cm/s). Pulsatile flow phantom experiments demonstrated good agreement between triple-VENC and single-VENC acquisitions (peak flow < 0.8% difference; peak velocity < 11.7% difference). Triconditional triple-VENC unwrapping consistently outperformed dual-VENC unwrapping, correctly unwrapping more than 83% and 46%-66% more voxels in vitro and in vivo, respectively. CONCLUSION: Triple-VENC 4D flow MRI adds no additional scan time to dual-VENC MRI and has the potential for improved unwrapping to extend the velocity dynamic range beyond dual-VENC methods.


Assuntos
Aorta Torácica/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Microscopia de Contraste de Fase , Adulto , Algoritmos , Velocidade do Fluxo Sanguíneo , Feminino , Gadolínio/farmacologia , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Angiografia por Ressonância Magnética , Masculino , Imagens de Fantasmas , Reprodutibilidade dos Testes
7.
Magn Reson Med ; 81(6): 3675-3690, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30803006

RESUMO

PURPOSE: To evaluate the accuracy and feasibility of a free-breathing 4D flow technique using compressed sensing (CS), where 4D flow imaging of the thoracic aorta is performed in 2 min with inline image reconstruction on the MRI scanner in less than 5 min. METHODS: The 10 in vitro 4D flow MRI scans were performed with different acceleration rates on a pulsatile flow phantom (9 CS acceleration factors [R = 5.4-14.1], 1 generalized autocalibrating partially parallel acquisition [GRAPPA] R = 2). Based on in vitro results, CS-accelerated 4D flow of the thoracic aorta was acquired in 20 healthy volunteers (38.3 ± 15.2 years old) and 11 patients with aortic disease (61.3 ± 15.1 years) with R = 7.7. A conventional 4D flow scan was acquired with matched spatial coverage and temporal resolution. RESULTS: CS depicted similar hemodynamics to conventional 4D flow in vitro, and in vivo, with >70% reduction in scan time (volunteers: 1:52 ± 0:25 versus 7:25 ± 2:35 min). Net flow values were within 3.5% in healthy volunteers, and voxel-by-voxel comparison demonstrated good agreement. CS significantly underestimated peak velocities (vmax ) and peak flow (Qmax ) in both volunteers and patients (volunteers: vmax , -16.2% to -9.4%, Qmax : -11.6% to -2.9%, patients: vmax , -11.2% to -4.0%; Qmax , -10.2% to -5.8%). CONCLUSION: Aortic 4D flow with CS is feasible in a two minute scan with less than 5 min for inline reconstruction. While net flow agreement was excellent, CS with R = 7.7 produced underestimation of Qmax and vmax ; however, these were generally within 13% of conventional 4D flow-derived values. This approach allows 4D flow to be feasible in clinical practice for comprehensive assessment of hemodynamics.


Assuntos
Aorta/diagnóstico por imagem , Imageamento Tridimensional/métodos , Angiografia por Ressonância Magnética/métodos , Adulto , Aorta/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Doenças das Valvas Cardíacas/diagnóstico por imagem , Doenças das Valvas Cardíacas/fisiopatologia , Humanos , Pessoa de Meia-Idade , Imagens de Fantasmas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...