Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 212: 108788, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38830276

RESUMO

Identifying green and effective measures for reducing wheat Cd toxicity and grain Cd accumulation is crucial. This study used seedling sand culture and full-grown pot experiments of wheat cultivars 'Luomai23' (LM) and 'Zhongyu10' (ZY). The purpose was to determine the effects of exogenous MeJA on the phenotype, photosynthesis, antioxidant system, Cd accumulation and distribution, transporter gene expression, and cell wall properties of Cd-stressed wheat. Compared with Cd treatment alone, the plant height and maximum root length treated with 0.001 µM MeJA increased by more than 6.3% and 16.6%, respectively. Under 5 mg⋅kg-1 Cd treatment, spraying 10 µM MeJA increased the photosynthetic rate of LM and ZY by 23.5% and 35.8% at the filling stage, respectively. Methyl jasmonate significantly reduced the H2O2 and MDA contents by increasing the activities of POD, DHAR, MDHAR, and GR and the contents of AsA and GSH. Applicating MeJA increased the content of chelate substances, cell wall polysaccharides, and cell wall functional groups. Besides, MeJA regulated the expression of Cd transporter genes, with shoot and root Cd content decreasing by 46.7% and 27.9% in LM, respectively. Spraying 10 µM MeJA reduced Cd absorption and translocation from vegetative organs to grains, thus reducing the grain Cd content of LM and ZY by 36.1 and 39.9% under 5 mg⋅kg-1 Cd treatment, respectively. Overexpressing TaJMT significantly increased the MeJA content and Cd tolerance of Arabidopsis. These results have improved the understanding of the mechanism through which MeJA alleviates Cd toxicity and reduces Cd accumulation in wheat.

2.
BMC Plant Biol ; 23(1): 618, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057735

RESUMO

BACKGROUND: Cytoplasmic male sterility (CMS) plays a crucial role in hybrid production. K-type CMS, a cytoplasmic male sterile line of wheat with the cytoplasms of Aegilops kotschyi, is widely used due to its excellent characteristics of agronomic performance, easy maintenance and easy restoration. However, the mechanism of its pollen abortion is not yet clear. RESULTS: In this study, wheat K-type CMS MS(KOTS)-90-110 (MS line) and it's fertile near-isogenic line MR (KOTS)-90-110 (MR line) were investigated. Cytological analysis indicated that the anthers of MS line microspore nucleus failed to divide normally into two sperm nucleus and lacked starch in mature pollen grains, and the key abortive period was the uninucleate stage to dinuclear stage. Then, we compared the transcriptome of MS line and MR line anthers at these two stages. 11,360 and 5182 differentially expressed genes (DEGs) were identified between the MS and MR lines in the early uninucleate and binucleate stages, respectively. Based on GO enrichment and KEGG pathways analysis, it was evident that significant transcriptomic differences were "plant hormone signal transduction", "MAPK signaling pathway" and "spliceosome". We identified 17 and 10 DEGs associated with the IAA and ABA signal transduction pathways, respectively. DEGs related to IAA signal transduction pathway were downregulated in the early uninucleate stage of MS line. The expression level of DEGs related to ABA pathway was significantly upregulated in MS line at the binucleate stage compared to MR line. The determination of plant hormone content and qRT-PCR further confirmed that hormone imbalance in MS lines. Meanwhile, 1 and 2 DEGs involved in ABA and Ethylene metabolism were also identified in the MAPK cascade pathway, respectively; the significant up regulation of spliceosome related genes in MS line may be another important factor leading to pollen abortion. CONCLUSIONS: We proposed a transcriptome-mediated pollen abortion network for K-type CMS in wheat. The main idea is hormone imbalance may be the primary factor, MAPK cascade pathway and alternative splicing (AS) may also play important regulatory roles in this process. These findings provided intriguing insights for the molecular mechanism of microspore abortion in K-type CMS, and also give useful clues to identify the crucial genes of CMS in wheat.


Assuntos
Redes Reguladoras de Genes , Triticum , Triticum/metabolismo , Infertilidade das Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Sementes , Perfilação da Expressão Gênica , Transcriptoma , Citoplasma/genética , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834145

RESUMO

Chlorophyll is an indispensable photoreceptor in plant photosynthesis. Its anabolic imbalance is detrimental to individual growth and development. As an essential epigenetic modification, DNA methylation can induce phenotypic variations, such as leaf color transformation, by regulating gene expression. Albino line XN1376B is a natural mutation of winter wheat cultivar XN1376; however, the regulatory mechanism of its albinism is still unclear. In this study, we found that low temperatures induced albinism in XN1376B. The number of chloroplasts decreased as the phenomenon of bleaching intensified and the fence tissue and sponge tissue slowly dissolved. We identified six distinct TaPOR (protochlorophyllide oxidoreductase) genes in the wheat genome, and TaPOR2D was deemed to be related to the phenomenon of albinism based on the expression in different color leaves (green leaves, white leaves and returned green leaves) and the analysis of promoters' cis-acting elements. TaPOR2D was localized to chloroplasts. TaPOR2D overexpression (TaPOR2D-OE) enhanced the chlorophyll significantly in Arabidopsis, especially at two weeks; the amount of chlorophyll was 6.46 mg/L higher than in WT. The methylation rate of the TaPOR2D promoter in low-temperature albino leaves is as high as 93%, whereas there was no methylation in green leaves. Correspondingly, three DNA methyltransferase genes (TaMET1, TaDRM and TaCMT) were up-regulated in white leaves. Our study clarified that the expression of TaPOR2D is associated with its promoter methylation at a low temperature; it affects the level of chlorophyll accumulation, which probably causes the abnormal development of plant chloroplasts in albino wheat XN1376B. The results provide a theoretical basis for in-depth analysis of the regulation of development of plant chloroplasts and color variation in wheat XN1376B leaves.


Assuntos
Albinismo , Arabidopsis , Clorofila/metabolismo , Triticum/metabolismo , Temperatura , Fotossíntese/genética , Metilação de DNA , Arabidopsis/metabolismo , Albinismo/genética , Albinismo/metabolismo , Folhas de Planta/metabolismo
4.
J Hazard Mater ; 445: 130499, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36455318

RESUMO

Soil cadmium (Cd) contamination can reduce wheat yield and quality, thus threatening food security and human health. Herein, morphological physiology, Cd accumulation and distribution, proteomic and metabolomic analyses were performed (using wheat cultivars 'Luomai23' (LM, Cd-sensitive) and 'Zhongyu10' (ZY, Cd-tolerant) at the seedling stage with sand culture) to reveal Cd tolerance mechanism. Cd inhibited wheat growth, caused oxidative stress, hindered carbon and nitrogen metabolism, and altered the quantity and composition of root exudates. The root Cd concentration was lower in ZY than in LM by about 35% under 15 µM Cd treatments. ZY reduced Cd uptake through root exudation of amino acids and alkaloids. ZY also reduced Cd accumulation through specific up-regulation (twice) of major facilitator superfamily (MFS) proteins. Furthermore, ZY enhanced Cd cell wall fixation and vacuolar compartmentalization by increasing pectin contents, hemicellulose1 contents, and adenosine triphosphate binding cassette subfamily C member 1 (ABCC1) transporter expression, thus reducing the Cd organelle fraction of ZY by about 12% and 44% in root and shoot, respectively, compared with LM. Additionally, ZY had enhanced resilience to Cd due to increased antioxidant capacity, plasma membrane stability, nitrogen metabolism, and endoplasmic reticulum homeostasis, indicating that the increased Cd tolerance could be because of multi-level coordination. These findings provide a reference for exploring the molecular mechanism of Cd tolerance and accumulation, providing a basis for safe utilization of Cd-contaminated soil by breeding Cd-tolerant and low Cd-accumulating wheat varieties.


Assuntos
Cádmio , Poluentes do Solo , Humanos , Cádmio/metabolismo , Triticum/metabolismo , Proteômica , Solo , Nitrogênio/metabolismo , Poluentes do Solo/metabolismo
5.
Plants (Basel) ; 11(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36559605

RESUMO

Microtubules play a fundamental role in plant development, morphogenesis, and cytokinesis; they are assembled from heterodimers containing an α-tubulin (TUA) and a ß-tubulin (TUB) protein. However, little research has been conducted on the TUA and TUB gene families in hexaploid wheat (Triticum aestivum L.). In this study, we identified 15 TaTUA and 28 TaTUB genes in wheat. Phylogenetic analysis showed that 15 TaTUA genes were divided into two major subfamilies, and 28 TaTUB genes were divided into five major subfamilies. Mostly, there were similar motif compositions and exon-intron structures among the same subfamilies. Segmental duplication of genes (WGD/segmental) is the main process of TaTUA and TaTUB gene family expansion in wheat. It was found that TaTUA and TaTUB genes presented specific temporal and spatial characteristics based on the expression profiles of 17 tissues during wheat development using publicly available RNA-seq data. It was worth noting, via qRT-PCR, that two TaTUA and five TaTUB genes were highly expressed in fertile anthers compared to male sterility. These were quite different between physiological male sterile lines and S-type cytoplasmic male sterile lines at different stages of pollen development. This study offers fundamental information on the TUA and TUB gene families during wheat development and provides new insights for exploring the molecular mechanism of wheat male sterility.

6.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35742874

RESUMO

Thermosensitive sterile lines are natural materials for exploring the effects of anther development on male fertility. To study the possible molecular mechanisms regulating protein activity during the induction of male sterility, proteomic and phosphoproteomic analyses with tandem mass tags (TMTs) were used to study the binucleate anther of the thermosensitive sterile wheat line YS3038. A total of 9072 proteins, including 5019 phosphoproteins, were identified. Enrichment analyses of differentially abundant proteins (DAPs) and phosphoproteins (DAPPs) in metabolic pathways showed that both were mainly related to energy metabolism. Soluble sugar and ATP content were significantly decreased, free fatty acid content was significantly increased, and ROS was abnormally accumulated in male sterile YS3038-A. In addition, 233 kinase-substrate pairs involved in potential phosphorylation control networks were predicted to regulate fertility. Candidate proteins were identified, and a quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to validate the TMT results. TaPDCD5 is likely to be involved in fertility conversion of YS3038 by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS). Our data provide new insights into the mechanism of TCMS, which has value for identifying potential candidate proteins associated with the formation or abortion of pollen and promotion of wheat heterosis utilization.


Assuntos
Proteômica , Triticum , Regulação da Expressão Gênica de Plantas , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/metabolismo , Proteômica/métodos , Triticum/metabolismo
7.
Genes (Basel) ; 13(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35205355

RESUMO

The utilization of crop heterosis can greatly improve crop yield. The sterile line is vital for the heterosis utilization of wheat (Triticum aestivum L.). The chloroplast genomes of two sterile lines and one maintainer were sequenced using second-generation high-throughput technology and assembled. The nonsynonymous mutated genes among the three varieties were identified, the expressed difference was further analyzed by qPCR, and finally, the function of the differentially expressed genes was analyzed by the barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) method. A total of 16 genes containing 31 nonsynonymous mutations between K519A and 519B were identified. There were no base mutations in the protein-encoding genes between K519A and YS3038. The chloroplast genomes of 519B and K519A were closely related to the Triticum genus and Aegilops genus, respectively. The gene expression levels of the six selected genes with nonsynonymous mutation sites for K519A compared to 519B were mostly downregulated at the binucleate and trinucleate stages of pollen development. The seed setting rates of atpB-silenced or ndhH-silenced 519B plants by BSMV-VIGS method were significantly reduced. It can be concluded that atpB and the ndhH are likely to be involved in the reproductive transformation of 519B.


Assuntos
Infertilidade , Triticum , Centers for Medicare and Medicaid Services, U.S. , Regulação da Expressão Gênica de Plantas/genética , Genes de Cloroplastos , Infertilidade/genética , Vírus de Plantas , Triticum/genética , Triticum/metabolismo , Estados Unidos
8.
J Environ Manage ; 305: 114365, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34953227

RESUMO

Root radial transport is important for cadmium (Cd) absorption and root-shoot translocation. However, the relationship between root structural characteristics and radial transport of Cd in wheat is still unclear. Six wheat cultivars with different Cd tolerance and accumulation characteristics were used to investigate the roles of root phenotype, microstructure, and apoplastic and symplastic pathways in Cd uptake and root-shoot transport in pot culture. Longer root length, smaller root diameter, and more numerous root tips were more conducive to Cd absorption, while thicker roots were able to retain more Cd, thus reducing root-shoot transport and improving Cd tolerance of shoots. Cd stress can induce the deposition of apoplastic barriers in wheat roots, and the deposition of the apoplastic barrier increases under greater stress. The formation of apoplastic barriers can reduce Cd absorption and transfer to the shoot, and the presence of passage cells can weaken this effect. The cell wall thickening induced by Cd stress enhanced Cd adsorption capacity in wheat roots, but there was no significant correlation between Cd content and polysaccharide content in the cell wall. The up-regulated expression of TaHMA3 and TaVP1, which encode proteins related to Cd compartmentalization, was associated with increased Cd tolerance in wheat and decreased Cd translocation to aboveground parts. The morphology and anatomy of roots appear to play critical roles in Cd tolerance, uptake, and translocation in wheat. The present study provides useful information for the selection of wheat cultivars with low Cd accumulation.


Assuntos
Cádmio , Poluentes do Solo , Adsorção , Transporte Biológico , Cádmio/análise , Cádmio/toxicidade , Raízes de Plantas/química , Poluentes do Solo/análise , Triticum/genética
9.
Plant Physiol Biochem ; 162: 363-377, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33730621

RESUMO

Thermosensitive cytoplasmic male sterile (TCMS) lines play an important role in wheat breeding, heterosis utilization, and germplasm innovation. MicroRNAs (miRNAs) can regulate the expression level of target genes by inhibiting the translation of these genes. YS3038 is a wheat TCMS line. In this study, the fertility conversion mechanism of YS3038 was studied by examining the abortion characteristics of YS3038, the regulation pattern of miRNAs and the target genes of miRNAs in YS3038. MiRNA-seq was performed on three important stages of YS3038 under sterile and fertile conditions. Then, the clean reads were aligned with some databases to filter other ncRNAs and repeats. The known miRNAs and novel miRNAs were predicted by sequence comparison with known miRNAs from miRbase. Differential expression of miRNAs between different stages and between different fertile conditions was analyzed, and functional analysis of target genes with opposite expression patterns as those of the miRNAs was conducted. The Ubisch bodies and microspores of sterile anthers were covered with filamentous materials. The degradation of the tapetum cells, the chloroplast structure of endothecium cells, and the microspore structure were abnormal. Microspore development was hindered from the late uninucleate stage to the binucleate stage. Twenty, 52, and 68 differentially expressed miRNAs (DEmiRs) were identified at the early uninucleate, late uninucleate, and binucleate stages, respectively, and there were 0, 7, and 72 differentially expressed target genes (DETGs), respectively, at these three stages. At the binucleate stage, 29 DEmiRs had 41 target mRNAs in total, and the expression patterns of the 41 target mRNAs were opposite to those of the 29 miRNAs. Fifteen significantly enriched KEGG pathways were associated with the 41 target mRNAs. Leucine-rich repeat receptor-like kinases (LRR-RLKs) play important roles in plant developmental and physiological processes. Some studies have shown that the expression of LRR-RLKs is related to the differentiation of microsporocytes and tapetum cells and to male sterility. An LRR-RLK (TaeRPK) gene was silenced by the barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) method, and the seed setting rates of the TaeRPK-silenced plants (3.51%) were significantly lower than those of the negative control plants (88.78%) (P < 0.01). Thus, the TaeRPK gene is likely to be involved in the fertility conversion of YS3038.


Assuntos
Infertilidade Masculina , MicroRNAs , Regulação da Expressão Gênica de Plantas , Humanos , Masculino , MicroRNAs/genética , Melhoramento Vegetal , Infertilidade das Plantas/genética , Triticum/genética
10.
Mol Breed ; 41(10): 61, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37309316

RESUMO

Heterosis can improve the stress resistance, quality, and yield of crops, and the male sterility of wheat can be utilized to accelerate the breeding process of hybrid. To determine whether mitochondrial genes are involved in the fertility of K-type cytoplasmic male-sterile (CMS) line and the YS-type thermosensitive male-sterile (TMS) line in wheat, we sequenced and assembled the mitochondrial genomes of K519A, 519B, and YS3038 by next-generation sequencing (NGS). The non-synonymous mutations were analyzed, and the first-generation sequencing was conducted to verify the non-synonymous mutation sites. Furthermore, the expression patterns of genes with non-synonymous mutations were analyzed. Finally, the candidate genes were silenced by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) to test the functions of the candidate genes. The results revealed that the mitochondrial genomes of K519A, 519B, and YS3038 were 420,543, 433,560, and 452,567 bp in length, respectively. Besides, 33, 31, and 37 protein-coding genes were identified in K519A, 519B, and YS3038, respectively. There were 14 protein-coding genes and 83 open reading frame (ORF) sequences that differed between K519A and 519B and 10 protein-coding genes and 122 ORF sequences that differed between K519A and YS3038. At the binucleate stage, seven genes (nad6, ORF256, ORF216, ORF138, atp6, nad3, and cox1) were downregulated in K519A compared with 519B, and 10 genes (nad6, atp6, cox3, atp8, nad3, cox1, rps3, ORF216, ORF138, and ORF224) were downregulated in YS3038 compared with K519A. Besides, six genes (nad6, ORF138, cox3, cox1, rps3, and ORF224) were downregulated under fertile conditions relative to sterile conditions in YS3038. Gene silencing analysis showed that the silencing of cox1 significantly reduced the seed setting rate of YS3038, indicating that the cox1 gene may be involved in the fertility transformation of YS3038. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01252-x.

11.
Funct Plant Biol ; 48(4): 386-401, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33278911

RESUMO

Late embryogenesis-abundant (LEA) proteins are the products of an important gene family in plants that play vital roles in regulating growth and development as well as a variety of stress responses. In our study, 67 members of LEA (BdLEA) were identified in the genome of Brachypodium distachyon L. Analyses of gene structure, evolutionary relationships and protein motifs showed that the BdLEAs belonged to six subfamilies. Analyses of chromosomal locations and duplication events revealed that the 67 BdLEAs were distributed over all five chromosomes and 26 BdLEAs were identified as products of duplication events. Gene Ontology (GO) annotation results suggested that nearly 60% of BdLEAs could be involved in stress response. Furthermore, transcriptomic analysis showed that the BdLEAs were differentially expressed in nine organs and responded to low stringency of exogenous phytohormones. Subsequently, 18 BdLEAs from six subfamilies were randomly selected for quantitative real-time PCR (qRT-PCR) analysis, which showed that they were mainly expressed in the spikelets and they may preferentially respond to salt, drought and abscisic acid (ABA) stress. This study is the first to report the characteristics of the BdLEA family, providing valuable information for understanding the evolution of LEAs in the model plant B. distachyon and supporting future functional research on these proteins.


Assuntos
Brachypodium , Brachypodium/genética , Desenvolvimento Embrionário , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Estresse Fisiológico/genética
12.
Plant Physiol Biochem ; 158: 190-207, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33214039

RESUMO

Previous studies have indicated that noncoding RNAs are important factors in gene functions. To explore the mechanism of male sterility of YS3038, the sterile genes were mapped, and based on previous work, the expression of long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and their target genes was studied. Weighted gene coexpression network analysis (WGCNA) and competitive endogenous RNA (ceRNA) analysis were further performed for differentially expressed noncoding RNAs and target genes. At last, the candidate genes were silenced by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) to prove their function. The sterile genes were mapped on chromosomes 1B and 6B based on chip mix pool analysis, and one major effect QTL (27.3190% variation) was found based on SSR primers. The WGCNA analysis revealed that the dark turquoise and steel blue modules were highly correlated with anther development and fertility conversion, respectively. The ceRNA analysis showed that a total of 184 RNAs interacted with each other, including 115 mRNAs, 55 microRNAs (miRNAs), eight circRNAs, and six lncRNAs. Finally, the seed setting rate of the plant was significantly decreased after fatty acyl-CoA reductase 5 silencing. This study provides breeders with a new option for the development of thermosensitive cytoplasmic male-sterile (TCMS) wheat lines, which will favor the sustainable development of two-line hybrid wheat.


Assuntos
Infertilidade das Plantas/genética , RNA de Plantas/genética , Triticum/genética , Redes Reguladoras de Genes , Inativação Gênica , MicroRNAs , RNA Circular , RNA Longo não Codificante , RNA Mensageiro
13.
Front Genet ; 11: 577897, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329715

RESUMO

Crops are challenged by the increasing high temperature. Heat shock protein 90 (HSP90), a molecular chaperone, plays a critical role in the heat response in plants. However, the evolutionary conservation and divergence of HSP90s homeologs in polyploidy crops are largely unknown. Using the newly released hexaploid wheat reference sequence, we identified 18 TaHSP90s that are evenly distributed as homeologous genes among three wheat subgenomes, and were highly conserved in terms of sequence identity and gene structure among homeologs. Intensive time-course transcriptomes showed uniform expression and transcriptional response profiles among the three TaHSP90 homeologs. Based on the comprehensive isoforms generated by combining full-length single-molecule sequencing and Illumina short read sequencing, 126 isoforms, including 90 newly identified isoforms of TaHSP90s, were identified, and each TaHSP90 generated one to three major isoforms. Intriguingly, the numbers and the splicing modes of the major isoforms generated by three TaHSP90 homeologs were obviously different. Furthermore, the quantified expression profiles of the major isoforms generated by three TaHSP90 homeologs are also distinctly varied, exhibiting differential alternative splicing (AS) responses of homeologs. Our results showed that the AS diversified the heat response of the conserved TaHSP90s and provided a new perspective for understanding about functional conservation and divergence of homologous genes.

14.
BMC Plant Biol ; 20(1): 420, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32912142

RESUMO

BACKGROUND: Members of the plant-specific SPL gene family (squamosa promoter-binding protein -like) contain the SBP conserved domain and are involved in the regulation of plant growth and development, including the development of plant flowers and plant epidermal hair, the plant stress response, and the synthesis of secondary metabolites. This family has been identified in various plants. However, there is no systematic analysis of the SPL gene family at the genome-wide level of wheat. RESULTS: In this study, 56 putative TaSPL genes were identified using the comparative genomics method; we renamed them TaSPL001 - TaSPL056 on their chromosomal distribution. According to the un-rooted neighbor joining phylogenetic tree, gene structure and motif analyses, the 56 TaSPL genes were divided into 8 subgroups. A total of 81 TaSPL gene pairs were designated as arising from duplication events and 64 interacting protein branches were identified as involve in the protein interaction network. The expression patterns of 21 randomly selected TaSPL genes in different tissues (roots, stems, leaves and inflorescence) and under 4 treatments (abscisic acid, gibberellin, drought and salt) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). CONCLUSIONS: The wheat genome contains 56 TaSPL genes and those in same subfamily share similar gene structure and motifs. TaSPL gene expansion occurred through segmental duplication events. Combining the results of transcriptional and qRT-PCR analyses, most of these TaSPL genes were found to regulate inflorescence and spike development. Additionally, we found that 13 TaSPLs were upregulated by abscisic acid, indicating that TaSPL genes play a positive role in the abscisic acid-mediated pathway of the seedling stage. This study provides comprehensive information on the SPL gene family of wheat and lays a solid foundation for elucidating the biological functions of TaSPLs and improvement of wheat yield.


Assuntos
Proteínas de Transporte/genética , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Triticum/crescimento & desenvolvimento , Triticum/genética , China , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Genoma de Planta , Filogenia , Melhoramento Vegetal
15.
BMC Genomics ; 21(1): 343, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32380942

RESUMO

BACKGROUND: Heavy metal cadmium (Cd) is a common environmental pollutant in soils, which has an negative impacts on crop growth and development. At present, cadmium has become a major soil and water heavy metal pollutant, which not only causes permanent and irreversible health problems for humans, but also causes a significant reduction in crop yields. RESULTS: This study examined the chemical forms of Cd in the roots of two wheat varieties (M1019 and Xinong20) by continuous extraction and analyzed differences in distribution characteristics of Cd in the root cell wall, cytoplasm, and organelles by elemental content determination and subcellular separation. Furthermore, we conducted proteomics analysis of the roots of the two varieties under Cd pollution using mass spectrometry quantitative proteomics techniques. A total of 11,651 proteins were identified, of which 10,532 proteins contained quantitative information. In addition, the differentially expressed proteins in the two varieties were related to DNA replication and repair, protein metabolism, and the glutathione metabolism pathway. CONCLUSION: The results of this study improve our understanding of the mechanism of plant responses to Cd stress.


Assuntos
Cádmio/metabolismo , Estresse Fisiológico , Triticum/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteoma , Proteômica , Poluentes do Solo/metabolismo , Triticum/genética
16.
Sci Rep ; 10(1): 25, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913328

RESUMO

One RIL population derived from the cross between Dalibao and BYL8 was used to examine the phenotypes of kernel-related traits in four different environments. Six important kernel traits, kernel length (KL), kernel width (KW), kernel perimeter (KP), kernel area (KA), kernel length/width ratio (KLW), and thousand-kernel weight (TKW) were evaluated in Yangling, Shaanxi Province, China (2016 and 2017), Nanyang, Henan Province, China (2017) and Suqian, Jiangsu Province, China (2017). A genetic linkage map was constructed using 205 SSR markers, and a total of 21 significant QTLs for KL, KW, KP, KA, KLW and TKW were located on 10 of the 21 wheat chromosomes, including 1A, 1B, 2A, 2B, 2D, 3D, 4D, 5A, 5B, and 7D, with a single QTL in different environments explaining 3.495-30.130% of the phenotypic variation. There were four loci for KLW, five for KA, five for KL, three for KP, two for KW, and two for TKW among the detected QTLs. We used BSA + 660 K gene chip technology to reveal the positions of major novel QTLs for KLW. A total of 670 out of 5285 polymorphic SNPs were detected on chromosome 2A. The SNPs in 2A are most likely related to the major QTL, and there may be minor QTLs on 5B, 7A, 3A and 4B. SSR markers were developed to verify the chromosome region associated with KLW. A linkage map was constructed with 7 SSR markers, and a major effect QTL was identified within a 21.55 cM interval, corresponding to a physical interval of 10.8 Mb in the Chinese Spring RefSeq v1.0 sequence. This study can provide useful information for subsequent construction of fine mapping and marker-assisted selection breeding.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Ligação Genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes/genética , Triticum/genética , Genótipo , Fenótipo , Sementes/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
17.
Planta ; 250(6): 2159-2171, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31628536

RESUMO

MAIN CONCLUSION: In the wheat TCMS line YS3038, the anther development is inhibited from late uninucleate stage to the binucleate stage. The disruption of energy metabolism pathways by aberrant transcriptional regulation causes the male sterility under low temperatures. The utilization of thermosensitive male sterile (TMS) lines provides a basis for two-line breeding. Previous work, including morphological and cytological observations, has shown that the development process of the TMS line YS3038 is inhibited from the late uninucleate stage to the binucleate stage. Transcriptomics studies could now help to elucidate the overall expression of related genes in a specific reproductive process, revealing the metabolic network and its regulatory mechanism of the reproductive process from the transcription level. Considering the fertility characteristics of YS3038, three important stages for transcriptome analysis were determined to be the early uninucleate, late uninucleate and binucleate stages. The number of differentially expressed genes (DEGs) was found to be highest in the binucleate stage, and most were related to energy metabolism. Quantitative PCR analysis of selected genes related to energy metabolism revealed that their expression patterns were consistent with the sequencing results. Analysis of the fertility mechanism of YS3038 showed that although the tapetum of anthers was degraded in advance of the tetrad stage, the development of microspores did not result in obvious abnormalities until the binucleate stage, because the genes involved in energy metabolism pathways, including starch and sucrose metabolism (SSM), glycolysis, the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and respiration electron transport chain are differentially expressed under sterile and fertile conditions. Therefore, the pollen in YS3038 was sterile.


Assuntos
Metabolismo Energético/fisiologia , Fertilidade/genética , Fertilidade/fisiologia , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas/genética , Infertilidade das Plantas/fisiologia , Triticum/genética , Triticum/fisiologia , Perfilação da Expressão Gênica
18.
Front Genet ; 10: 741, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475040

RESUMO

Cotton (Gossypium spp.) is the most important natural fiber crop in the world. The R2R3-MYB gene family is a large gene family involved in many plant functions including cotton fiber development. Although previous studies have reported its phylogenetic relationships, gene structures, and expression patterns in tetraploid G. hirsutum and diploid G. raimondii, little is known about the sequence variation of the members between G. hirsutum and G. barbadense and their involvement in the natural quantitative variation in fiber quality and yield. In this study, a comprehensive genome-wide comparative analysis was performed among the four Gossypium species using whole genome sequences, i.e., tetraploid G. hirsutum (AD1) and G. barbadense (AD2) as well as their likely ancestral diploid extants G. raimondii (D5) and G. arboreum (A2), leading to the identification of 406, 393, 216, and 213 R2R3-MYB genes, respectively. To elucidate whether the R2R3-MYB genes are genetically associated with fiber quality traits, 86 R2R3-MYB genes were co-localized with quantitative trait loci (QTL) hotspots for fiber quality and yield, including 42 genes localized within the fiber length QTL hotspots, in interspecific G. hirsutum × G. barbadense populations. There were 20 interspecific nonsynonymous single-nucleotide polymorphism (SNP) sites between the two tetraploid cultivated species, of which 16 developed from 11 R2R3-MYB genes were significantly correlated with fiber quality and yield in a backcross inbred population (BIL) of G. hirsutum × G. barbadense in at least one of the four field tests. Taken together, these results indicate that the sequence variation in these 11 R2R3-MYB genes is associated with the natural variation (i.e., QTL) in fiber quality and yield. Moreover, the functional SNPs of five R2R3-MYB allele pairs from the AD1 and AD2 genomes were significantly correlated with the gene expression related to fiber quality in fiber development. The results will be useful in further elucidating the role of the R2R3-MYB genes during fiber development.

19.
Gene ; 700: 149-162, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-30904716

RESUMO

Class III peroxidases are classical secretory plant peroxidases belonging to a large multi-gene family. Class III peroxidases are involved in various physical processes and the response to biotic and abiotic stress to protect plants from environmental adversities. In this study, 151 BdPrx genes were identified using HMM and Blastp program. According to their physical location, the 151 BdPrx genes were mapped on five chromosomes. The results of Gene Structure Display Serve and MEME revealed that BdPrxs in the same subgroup shared similar gene structure, and their protein sequences were highly conserved. Based on the analysis of evolutionary relationships and Ka/Ks, 151 BdPrx genes were divided into 15 subgroups, they have undergone purifying selection. In addition, the result of GO annotation showed that 100% of the BdPrxs participated in antioxidant. The protein-protein interaction network was constructed using the orthology-based method, found that 66 BdPrxs were involved in the regulatory network and 183 network branches were identified. Furthermore, analysis of the transcriptome data indicated that the BdPrx genes responded to low concentration of exogenous phytohormones and exhibited different levels of expression in the different tissues. Subsequently, 19 genes were selected for quantitative real-time PCR and found to be mainly expressed in the roots, might preferentially respond to hydrogen peroxide and gibberellin. Our results provide a foundation for further evolutionary and functional study of Prx genes in B. distachyon.


Assuntos
Brachypodium/enzimologia , Mapeamento Cromossômico/métodos , Perfilação da Expressão Gênica/métodos , Peroxidases/genética , Brachypodium/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Anotação de Sequência Molecular , Família Multigênica , Peroxidases/metabolismo , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...