Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Ying Yong Sheng Tai Xue Bao ; 34(9): 2391-2397, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37899104

RESUMO

Urease inhibitors and nitrification inhibitors can enhance nitrogen (N) fertilizer utilization efficiency and reducing N losses through regulating urea-N transformation. Common urease or nitrification inhibitors, however, are predominantly chemically synthesized and high-cost. Furthermore, their inhibitory effects are mediated by soil pro-perties, climatic conditions, and crop systems. In this study, we conducted a field experiment using natural synergists humic acid/zeolite, along with chemical nitrification inhibitor dicyandiamide (DCD) and their combination to elucidate the impacts of natural synergists combined with chemical inhibitors on annual yield, nitrogen utilization efficiency, soil nitrate-N accumulation, and nitrogen balance within the wheat/maize rotation system. The treatments included no nitrogen fertilizer application (CK), single application of urea (N), urea +DCD (ND), urea + humic acid (NH), urea + zeolite (NP), urea + urease inhibitor N-butylthiophosphoric triamide + DCD (NUD), urea + humic acid + DCD (NHD), and urea + zeolite + DCD (NPD). The results showed that, compared to the treatments NH and NP, the integration of humic acid or zeolite with DCD (NHD and NPD) significantly increased maize yield (11268 and 11397 kg·hm-2) and total annual yield (20494 and 20582 kg·hm-2), which were comparable to those of combined chemical urease and nitrification inhibitors (NUD). The NHD and NPD treatments had higher nitrogen utilization efficiency and lower soil nitrate-N accumulation in 80-100 cm soil layer across all seasons relative to the N treatment, which had no significant difference compared to the NUD treatment. Furthermore, a decline in soil nitrogen surplus by 10.7% and 13.9% was observed when comparing the NHD and NPD treatments with the NH and NP treatments, respectively. These findings suggested that combined humic acid or zeolite and chemical nitrification inhibitors could effectively enhance crop yield and N utilization efficiency and meet the requirements of the green and environmental preservation of modern agriculture.


Assuntos
Zea mays , Zeolitas , Triticum , Substâncias Húmicas , Fertilizantes/análise , Nitratos/farmacologia , Urease , Solo , Agricultura/métodos , Ureia/farmacologia , Nitrogênio/análise , Nitrificação
2.
Front Genet ; 13: 898474, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051696

RESUMO

Polo-like kinase 4 (PLK4), a key regulator of centriole biogenesis, is frequently overexpressed in cancer cells. However, roles and the mechanism of PLK4 in the leukemiagenesis of acute myeloid leukemia (AML) remain unclear. In this study, the PLK4 inhibitor Centrinone and the shRNA knockdown were used to investigate roles and the mechanism of PLK4 in the leukemiagenesis of AML. Our results indicated that Centrinone inhibited the proliferation of AML cells in a dose- and time-dependent manner via reduced the expression of PLK4 both in the protein and mRNA levels. Moreover, colony formation assay revealed that Centrinone reduced the number and the size of the AML colonies. Centrinone induced AML cell apoptosis by increasing the activation of Caspase-3/poly ADP-ribose polymerase (PARP). Notably, Centrinone caused the G2/M phase cell cycle arrest by decreasing the expression of cell cycle-related proteins such as Cyclin A2, Cyclin B1, and Cyclin-dependent kinase 1 (CDK1). Consistent with above results, knockdown the expression of PLK4 also inhibited cell proliferation and colony formation, induced cell apoptosis, and caused G2/M phase cell cycle arrest without affecting cell differentiation. All in all, this study suggested that PLK4 inhibited the progression of AML in vitro, and these results herein may provide clues in roles of PLK4 in the leukemiagenesis of AML.

3.
Lancet Infect Dis ; 20(10): 1141-1150, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32562601

RESUMO

BACKGROUND: As of June 8, 2020, the global reported number of COVID-19 cases had reached more than 7 million with over 400 000 deaths. The household transmissibility of the causative pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains unclear. We aimed to estimate the secondary attack rate of SARS-CoV-2 among household and non-household close contacts in Guangzhou, China, using a statistical transmission model. METHODS: In this retrospective cohort study, we used a comprehensive contact tracing dataset from the Guangzhou Center for Disease Control and Prevention to estimate the secondary attack rate of COVID-19 (defined as the probability that an infected individual will transmit the disease to a susceptible individual) among household and non-household contacts, using a statistical transmission model. We considered two alternative definitions of household contacts in the analysis: individuals who were either family members or close relatives, such as parents and parents-in-law, regardless of residential address, and individuals living at the same address regardless of relationship. We assessed the demographic determinants of transmissibility and the infectivity of COVID-19 cases during their incubation period. FINDINGS: Between Jan 7, 2020, and Feb 18, 2020, we traced 195 unrelated close contact groups (215 primary cases, 134 secondary or tertiary cases, and 1964 uninfected close contacts). By identifying households from these groups, assuming a mean incubation period of 5 days, a maximum infectious period of 13 days, and no case isolation, the estimated secondary attack rate among household contacts was 12·4% (95% CI 9·8-15·4) when household contacts were defined on the basis of close relatives and 17·1% (13·3-21·8) when household contacts were defined on the basis of residential address. Compared with the oldest age group (≥60 years), the risk of household infection was lower in the youngest age group (<20 years; odds ratio [OR] 0·23 [95% CI 0·11-0·46]) and among adults aged 20-59 years (OR 0·64 [95% CI 0·43-0·97]). Our results suggest greater infectivity during the incubation period than during the symptomatic period, although differences were not statistically significant (OR 0·61 [95% CI 0·27-1·38]). The estimated local reproductive number (R) based on observed contact frequencies of primary cases was 0·5 (95% CI 0·41-0·62) in Guangzhou. The projected local R, had there been no isolation of cases or quarantine of their contacts, was 0·6 (95% CI 0·49-0·74) when household was defined on the basis of close relatives. INTERPRETATION: SARS-CoV-2 is more transmissible in households than SARS-CoV and Middle East respiratory syndrome coronavirus. Older individuals (aged ≥60 years) are the most susceptible to household transmission of SARS-CoV-2. In addition to case finding and isolation, timely tracing and quarantine of close contacts should be implemented to prevent onward transmission during the viral incubation period. FUNDING: US National Institutes of Health, Science and Technology Plan Project of Guangzhou, Project for Key Medicine Discipline Construction of Guangzhou Municipality, Key Research and Development Program of China.


Assuntos
Busca de Comunicante , Infecções por Coronavirus/transmissão , Características da Família , Pneumonia Viral/transmissão , Adulto , Infecções Assintomáticas/epidemiologia , Número Básico de Reprodução , Betacoronavirus , COVID-19 , China/epidemiologia , Busca de Comunicante/estatística & dados numéricos , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Quarentena , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2 , Adulto Jovem
4.
Int J Biol Macromol ; 137: 1030-1040, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31299252

RESUMO

Activating mutations in JAK2 have been described in patients with various hematologic malignancies including acute myeloid leukemia (AML) and myeloproliferative neoplasms. However, mechanism of these mutations in JAK2's activity, structural stability and pathology of AML remains poorly understood. The JAK2 T875N somatic mutation has been detected in about 5.2% of AML patients. But the structural basis and mechanism of JAK2 T875N mutation in the pathology of AML is still unclear. Our results suggested that JAK2 T875N mutation disrupted the T875 and D873 interaction which destroyed the compact structure of JH1 domain, forced it into the active conformation, facilitated the entrance of substrate and thus led to JAK2 hyperactivation. Mutations (T875N, T875A, D873A and D873G) disrupted the T875 and D873 interaction enhanced JAK2's activity, decreased its structural stability and JH2 domain's activity which further enhanced JAK2's activity, while mutations (T875R, D873E, T875R/D873E) repaired this interaction displayed opposite results. Moreover, JAK2 T875N mutation enhanced the activity of JAK2-STAT5 pathway, promoted the proliferation and transformation of OCI-AML3 cells. This study provides clues in understanding structural basis of T875N mutation caused JAK2 hyperactivation and its roles in the pathology of AML.


Assuntos
Transformação Celular Neoplásica/genética , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Leucemia Mieloide Aguda/patologia , Mutação , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Ativação Enzimática/genética , Estabilidade Enzimática/genética , Humanos , Janus Quinase 2/química , Modelos Moleculares , Conformação Proteica
5.
Int J Biol Macromol ; 136: 209-219, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199972

RESUMO

Janus tyrosine kinase 2 (JAK2) mediates downstream signaling of cytokine receptors in all hematological lineages, constitutively active somatic JAK2 mutations were important for the leukemogenesis of acute leukemia (AL). The JAK2 R867Q somatic mutation is detected in a subset of AL patients. However, roles of JAK2 R867Q mutation in the pathogenesis of AL remain unclear. In this study, homology modeling analysis showed that loss of interaction between R867 and Y613 disrupted the JAK2 JH1/JH2 domain's interactions was responsible for its activation. JAK2 R867Q and mutations (R867A and R867G) abolished this interaction caused JAK2 constitutive activation. While, mutations (R867K, Y613E, R867K/Y613E) repairing this interaction reduced JAK2 R867Q mutation's activity. Furthermore, our studies showed that abolished R867 and Y613 interaction disrupted JH1/JH2 domains' interactions and led to JAK2 constitutive activation. More importantly, mutations (R867Q, R867A and R867G) disrupted this interaction enhanced the activity of JAK2-STAT5 pathway and the proliferation of Ba/F3 and MV4-11 cells. Further study showed that JAK2 R867Q mutation promoted the expression of proliferation marker and inhibited the differentiation marker of Ba/F3 and MV4-11 cells. Thus our studies provide clues in understanding the pathogenesis of JAK2 R867Q mutation in AL.


Assuntos
Janus Quinase 2/química , Janus Quinase 2/metabolismo , Leucemia/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Doença Aguda , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Humanos , Interleucina-3/farmacologia , Janus Quinase 2/genética , Leucemia/patologia , Modelos Moleculares , Proteínas Mutantes/genética , Redobramento de Proteína , Estrutura Secundária de Proteína/genética , Estrutura Terciária de Proteína/genética
6.
Neural Regen Res ; 14(8): 1404-1411, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30964066

RESUMO

Single-nucleotide polymorphisms in the brain-derived neurotrophic factor gene may affect the secretion and function of brain-derived neurotrophic factor, thereby affecting the occurrence, severity and prognosis of ischemic stroke. This case-control study included 778 patients (475 males and 303 females, mean age of 64.0 ± 12.6 years) in the acute phase of ischemic stroke and 865 control subjects (438 males and 427 females, mean age of 51.7 ± 14.7 years) from the Department of Neurology, West China Hospital, Sichuan University, China between September 2011 and December 2014. The patients' severities of neurological deficits in the acute phase were assessed using the National Institutes of Health Stroke Scale immediately after admission to hospital. The ischemic stroke patients were divided into different subtypes according to the Trial of Org 10172 in Acute Stroke Treatment classification. Early prognosis was evaluated using the Modified Rankin Scale when the patients were discharged. Genomic DNA was extracted from peripheral blood of participants. Genotyping of rs7124442 and rs6265 was performed using Kompetitive Allele Specific polymerase chain reaction genotyping technology. Our results demonstrated that patients who carried the C allele of the rs7124442 locus had a lower risk of poor prognosis than the T allele carriers (odds ratio [OR] = 0.67; 95% confidence interval [CI]: 0.45-1.00; P = 0.048). The patients with the CC or TC genotype also exhibited lower risk than TT carriers (OR = 0.65; 95% CI: 0.42-1.00; P = 0.049). The AA genotype at the rs6265 locus was associated with the occurrence of ischemic stroke in patients with large-artery atherosclerosis (OR = 0.58; 95% CI: 0.37-0.90; P = 0.015). We found that the C allele (CC and TC genotypes) at the rs7124442 locus may be protective for the prognosis of ischemic stroke. The AA genotype at the rs6265 locus is likely a protective factor against the occurrence of ischemic stroke in patients with large-artery atherosclerosis. The study protocol was approved by the Ethics Committee of West China Hospital of Sichuan University, China (approval ID number 2008[4]) on July 25, 2008.

7.
Int J Biol Macromol ; 124: 1123-1131, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30521925

RESUMO

Oncogenic activation of tyrosine kinase signaling pathway is recurrent in human leukemia. The acquired Janus kinase 2 (JAK2) K607N somatic mutation was detected in about 6.8% of acute myeloid leukemia (AML) patients. However, roles of JAK2 K607N mutation in the leukemogenesis of AML remain unclear. In this study, loss of interaction between K607 and E877 was identified as key reasons for JAK2 K607N mutation constitutive activation. JAK2 K607N and mutations (K607A, K607G and E877A) abolished the K607 and E877 interaction caused JAK2 constitutive activation. While, mutations (K607R, E877D) repairing this interaction reduced K607N mutation's activity. Furthermore, our studies showed that disruption of K607 and E877 interaction abolished JH1/JH2 domains' interactions and led to JAK2 constitutive activation. More importantly, JAK2 K607N and mutations disrupted this interaction enhanced JAK2-STAT5 pathway activation and the proliferation of Ba/F3 cells. Thus our studies provide clues in understanding the leukemogenesis of JAK2 K607N mutation in AML.


Assuntos
Janus Quinase 2 , Leucemia Mieloide Aguda , Proteínas de Neoplasias , Substituição de Aminoácidos , Linhagem Celular Tumoral , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Domínios Proteicos , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo
8.
Int J Biol Macromol ; 117: 271-279, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29842959

RESUMO

Although roles of somatic JAK2 mutations in clonally myeloproliferative neoplasms (MPNs) are well established, roles of germline JAK2 mutations in the pathogenesis of MPNs remain unclear. Recently, a novel activating, germline JAK2 F556V mutation was identified and involved in the pathogenesis of MPNs, but, its pathogenesis mechanism was still unknown. In this study, homology models of JAK2 demonstrated that F556 located between two threonine residues which interacted with ATP phosphate groups by hydrogen bonds, Thr555 with the γ-phosphate and Thr557 with the ß-phosphate in the active site of JAK2's JH2 domain. Moreover, the hydrogen bond between Thr557 and Arg715 played vital roles in sustaining the structural conformation of JH2's active site and JH1-JH2 domains' interactions. When F556 was replaced by other amino acids except Trp, the hydrogen bond, JH2 domain's structural conformation and JH1-JH2 domains' interactions disrupted for changing the helix between ß2 and ß3 strands which finally caused JAK2 activation. Mechanistic and functional studies showed that JAK2 F556V mutation disrupted JAK2 JH2 domain's activity, caused JAK2-STAT5 pathway activation and promoted the proliferation of BaF3 cells. Thus, our results herein may provide clues to understand the pathogenesis mechanism of JAK2 F556V mutation in the MPNs.


Assuntos
Transformação Celular Neoplásica , Janus Quinase 2/química , Janus Quinase 2/genética , Mutação , Domínio Catalítico , Proliferação de Células , Estabilidade Enzimática , Humanos , Simulação de Dinâmica Molecular , Fosforilação , Redobramento de Proteína
9.
Int J Biol Macromol ; 116: 1064-1073, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29782975

RESUMO

Janus tyrosine kinase 2 (JAK2) mediates downstream signaling of cytokine receptors in all hematological lineages, constitutively active somatic JAK2 mutations play key roles in the pathology of myeloproliferative neoplasms (MPNs). Recently, germline JAK2 mutations are also associated with triple-negative MPNs. A novel germline mutation JAK2 V625F is reported to be involved in a subset of MPNs patients. However, the pathogenesis of this mutation caused MPN is still unclear. In this study, the homology models of JAK2 V625F showed that the newly formed interaction between F625 and Y613 disrupted the JAK2 JH1-JH2 domain interactions was responsible for its activation, when F625 and Y613 interaction was disrupted, its activity significantly decreased. While, when this interaction was repaired whether by forming hydrogen bond or salt bond, it would cause JAK2 activation. Biochemical studies also demonstrated that JAK2 V625F mutation led to JAK2-STAT5 pathway activation and promoted the proliferation of BaF3 cells. Thus, our results herein provide clues to understand the mechanism JAK2 V625F mutation caused MPNs and give information for the development of JAK2 mutation specific inhibitors.


Assuntos
Mutação em Linhagem Germinativa , Neoplasias Hematológicas , Janus Quinase 2 , Mutação de Sentido Incorreto , Transtornos Mieloproliferativos , Proteínas de Neoplasias , Transdução de Sinais , Substituição de Aminoácidos , Linhagem Celular Tumoral , Neoplasias Hematológicas/enzimologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Humanos , Ligação de Hidrogênio , Janus Quinase 2/química , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Transtornos Mieloproliferativos/enzimologia , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo
10.
Food Chem ; 165: 191-7, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25038666

RESUMO

[6]-Gingerol and [6]-shogaol are the major pungent components in ginger with a variety of biological activities including antioxidant activity. To explore their structure determinants for antioxidant activity, we synthesized eight compounds differentiated by their side chains which are characteristic of the C1-C2 double bond, the C4-C5 double bond or the 5-OH, and the six- or twelve-carbon unbranched alkyl chain. Our results show that their antioxidant activity depends significantly on the side chain structure, the reaction mediums and substrates. Noticeably, existence of the 5-OH decreases their formal hydrogen-transfer and electron-donating abilities, but increases their DNA damage- and lipid peroxidation-protecting abilities. Additionally, despite significantly reducing their DNA strand breakage-inhibiting activity, extension of the chain length from six to twelve carbons enhances their anti-haemolysis activity.


Assuntos
Antioxidantes/química , Catecóis/química , Álcoois Graxos/química , Extratos Vegetais/química , Dano ao DNA , Peroxidação de Lipídeos
11.
Neurochem Res ; 39(9): 1817-24, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25069640

RESUMO

Danhong injection, a Chinese Materia Medica standardized product extracted from Radix Salviae miltiorrhizae and Flos Carthami tinctorii, is used extensively for the treatment of cerebrovascular diseases such as acutely cerebral infarction in clinic. In this study, we further investigated the mechanisms of Danhong injection on cerebral ischemia/reperfusion (I/R) damage relating to Nrf2/ARE signalling pathway in vivo and in vitro. For in vivo experiment, cerebral I/R injury was induced through middle cerebral artery occlusion. Rats were randomly divided into five groups: sham-operated group, I/R injury group, 6 mg/kg edaravone injection (positive control drug) group, 0.9 ml/kg Danhong injection (DHI-L) group, 1.8 ml/kg Danhong injection (DHI-H) group. The neurological score, cerebral infarction and brain edema were assessed while levels of superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde (MDA) in brain tissue were also evaluated. Transcription levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), NAD(P)H: quinone oxidoreductase 1 (NQO1) were analysed by real-time polymerase chain reaction. For in vitro experiment, mouse Neuro-2A cells were wounded with H2O2 then cell viability and mRNA transcriptions levels of Nrf2, HO-1, NQO1 were detected. Protein expression level of Nrf2 was assayed by western blotting. The results showed that Danhong injection could ameliorate neurological score, cerebral infarction and brain edema. Also it can increase levels of SOD, GSH and decrease of MDA and upregulate expressions of Nrf2, HO-1, NQO1 in ischemic brain tissue in vivo. What's more, it increased the mRNA transcription of Nrf2 and HO-1 and upregulated protein expression of Nrf2 in vitro. These findings suggested that Danhong injection could prevent I/R-induced brain damage through activating Nrf2/ARE signaling pathway.


Assuntos
Lesões Encefálicas/prevenção & controle , Medicamentos de Ervas Chinesas/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Animais , Antioxidantes/metabolismo , Western Blotting , Técnicas In Vitro , Masculino , Ratos , Ratos Wistar
12.
Food Chem ; 158: 41-7, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24731312

RESUMO

To optimize antioxidant activity and lipophilicity of cinnamic acid derivatives (CAs) including ferulic acid, sinapic acid, 3,4-dimethoxycinnamic acid, and p-hydroxycinnamic acid, four analogs bearing an additional double bond between their aromatic ring and propenoic acid moiety were designed and synthesized based on the conjugated chain elongation strategy. The antioxidant performance of the CAs were investigated by 2,2'-diphenyl-1-picrylhydrazyl (DPPH)-scavenging, ferric reducing/antioxidant power, cyclic voltammetry, DNA strand breakage-inhibiting and anti-haemolysis activity assays. It was found that CAs with elongation of conjugated chains display increased DPPH-scavenging, DNA strand breakage-inhibiting and anti-haemolysis activities as compared to their parent molecules, due to their improved hydrogen atom-donating ability and lipophilicity. Overall, this work highlights an effective strategy to develop potential CA-directed antioxidants by elongating their conjugated chain.


Assuntos
Antioxidantes/química , Cinamatos/química , Estrutura Molecular , Oxirredução , Polifenóis
13.
Mil Med Res ; 1: 15, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25722872

RESUMO

Emerging infectious diseases are some of modern society's greatest threats. Like some great construction efforts designed to protect mankind, current public health measures against these emerging pathogens have not always been successful. This paper highlights the importance of embracing new interdisciplinary approaches towards emerging pathogen threats. One such approach, termed One Health, is quickly being embraced by professional organizations and public health institutions across the world as a way forward. This paper briefly discusses the above problems and preliminary steps taken by Chinese academic institutions to embrace the One Health approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...