Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Int J Gen Med ; 17: 2055-2063, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751493

RESUMO

Surveillance of drug safety is an important aspect in the routine medical care. Adverse events caused by real-world drug utilization has become one of the leading causes of death and an urgent issue in the field of toxicology. Cardiovascular disease is now the leading cause of fatal diseases in most countries, especially in the elderly population who often suffer from multiple diseases and need long-term multidrug therapy. Among which, statins have been widely used to lower bad cholesterol and regress coronary plaque mainly in patients with hyperlipidemia and atherosclerotic cardiovascular diseases (ASCVD). Although the real-world benefits of statins are significant, different degrees and types of adverse drug reactions (ADR) such as liver dysfunction and muscle injury, have a great impact on the original treatment regimens as well as the quality of life. This review describes the epidemiology, mechanisms, early identification and post-intervention of statin-associated liver dysfunction and muscle injury based on the updated clinical evidence. It provides systematic and comprehensive guidance and necessary supplement for the clinical safety of statin use in cardiovascular diseases.

2.
Acta Pharmacol Sin ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719954

RESUMO

Hypertensive cerebrovascular remodeling involves the enlargement of vascular smooth muscle cells (VSMCs), which activates volume-regulated Cl- channels (VRCCs). The leucine-rich repeat-containing family 8 A (LRRC8A) has been shown to be the molecular identity of VRCCs. However, its role in vascular remodeling during hypertension is unclear. In this study, we used vascular smooth muscle-specific LRRC8A knockout (CKO) mice and an angiotensin II (Ang II)-induced hypertension model. The results showed that cerebrovascular remodeling during hypertension was ameliorated in CKO mice, and extracellular matrix (ECM) deposition was reduced. Based on the RNA-sequencing analysis of aortic tissues, the level of matrix metalloproteinases (MMPs), such as MMP-9 and MMP-14, were reduced in CKO mice with hypertension, which was further verified in vivo by qPCR and immunofluorescence analysis. Knockdown of LRRC8A in VSMCs inhibited the Ang II-induced upregulation of collagen I, fibronectin, and matrix metalloproteinases (MMPs), and overexpression of LRRC8A had the opposite effect. Further experiments revealed an interaction between with-no-lysine (K)-1 (WNK1), which is a "Cl--sensitive kinase", and Forkhead transcription factor O3a (FOXO3a), which is a transcription factor that regulates MMP expression. Ang II induced the phosphorylation of WNK1 and downstream FOXO3a, which then increased the expression of MMP-2 and MMP-9. This process was inhibited or potentiated when LRRC8A was knocked down or overexpressed, respectively. Overall, these results demonstrate that LRRC8A knockout in vascular smooth muscle protects against cerebrovascular remodeling during hypertension by reducing ECM deposition and inhibiting the WNK1/FOXO3a/MMP signaling pathway, demonstrating that LRRC8A is a potential therapeutic target for vascular remodeling-associated diseases such as stroke.

3.
Br J Pharmacol ; 181(5): 640-658, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37702564

RESUMO

BACKGROUND AND PURPOSE: Atherosclerosis induced by cyclosporine A (CsA), an inhibitor of the calcineurin/nuclear factor of activated T cells (NFAT) pathway, is a major concern after organ transplantation. However, the atherosclerotic mechanisms of CsA remain obscure. We previously demonstrated that calcineurin/NFAT signalling inhibition contributes to atherogenesis via suppressing microRNA-204 (miR-204) transcription. We therefore hypothesised that miR-204 is involved in the development of CsA-induced atherosclerosis. EXPERIMENTAL APPROACH: ApoE-/- mice with macrophage-miR-204 overexpression were generated to determine the effects of miR-204 on CsA-induced atherosclerosis. Luciferase reporter assays and chromatin immunoprecipitation sequencing were performed to explore the targets mediating miR-204 effects. KEY RESULTS: CsA alone did not significantly affect atherosclerotic lesions or serum lipid levels. However, it exacerbated high-fat diet-induced atherosclerosis and hyperlipidemia in C57BL/6J and ApoE-/- mice, respectively. miR-204 levels decreased in circulating monocytes and plaque lesions during CsA-induced atherosclerosis. The upregulation of miR-204 in macrophages inhibited CsA-induced atherosclerotic plaque formation but did not affect serum lipid levels. miR-204 limited the CsA-induced foam cell formation by reducing the expression of the scavenger receptors SR-BII and CD36. SR-BII was post-transcriptionally regulated by mature miR-204-5p via 3'-UTR targeting. Additionally, nuclear-localised miR-204-3p prevented the CsA-induced binding of Ago2 to the CD36 promoter, suppressing CD36 transcription. SR-BII or CD36 expression restoration dampened the beneficial effects of miR-204 on CsA-induced atherosclerosis. CONCLUSION AND IMPLICATIONS: Macrophage miR-204 ameliorates CsA-induced atherosclerosis, suggesting that miR-204 may be a potential target for the prevention and treatment of CsA-related atherosclerotic side effects.


Assuntos
Aterosclerose , MicroRNAs , Placa Aterosclerótica , Animais , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Calcineurina/metabolismo , Antígenos CD36/metabolismo , Ciclosporina/efeitos adversos , Ciclosporina/metabolismo , Lipídeos , Macrófagos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Placa Aterosclerótica/induzido quimicamente , Placa Aterosclerótica/metabolismo
4.
Ann Neurol ; 93(2): 244-256, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36088542

RESUMO

OBJECTIVE: Despite the increasing number of genes associated with Charcot-Marie-Tooth (CMT) disease, many patients currently still lack appropriate genetic diagnosis for this disease. Autosomal dominant mutations in aminoacyl-tRNA synthetases (ARSs) have been implicated in CMT. Here, we describe causal missense mutations in the gene encoding seryl-tRNA synthetase 1 (SerRS) for 3 families affected with CMT. METHODS: Whole-exome sequencing was performed in 16 patients and 14 unaffected members of 3 unrelated families. The functional impact of the genetic variants identified was investigated using bioinformatic prediction tools and confirmed using cellular and biochemical assays. RESULTS: Combined linkage analysis for the 3 families revealed significant linkage (Zmax LOD = 6.9) between the genomic co-ordinates on chromosome 1: 108681600-110300504. Within the linkage region, heterozygous SerRS missense variants segregated with the clinical phenotype in the 3 families. The mutant SerRS proteins exhibited reduced aminoacylation activity and abnormal SerRS dimerization, which suggests the impairment of total protein synthesis and induction of eIF2α phosphorylation. INTERPRETATION: Our findings suggest the heterozygous SerRS variants identified represent a novel cause for autosomal dominant CMT. Mutant SerRS proteins are known to impact various molecular and cellular functions. Our findings provide significant advances on the current understanding of the molecular mechanisms associated with ARS-related CMT. ANN NEUROL 2023;93:244-256.


Assuntos
Doença de Charcot-Marie-Tooth , Serina-tRNA Ligase , Humanos , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Serina-tRNA Ligase/genética , Mutação , Heterozigoto , Mutação de Sentido Incorreto/genética
5.
Front Endocrinol (Lausanne) ; 13: 874538, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573998

RESUMO

Background: Cognitive dysfunction is an important comorbidity of diabetes characterized by brain functional hypo-connectivity. However, our recent study demonstrated an adaptive hyper-connectivity in young type 2 diabetes with cognitive decrements. This longitudinal study aimed to further explore the changes in functional connectivity and cognitive outcomes after regular glycemic control. Methods: At 18 months after recruitment, participants underwent a second cognitive assessment and magnetic resonance imaging. Three enhanced functional connectivities previously identified at baseline were followed up. Linear mixed-effects models were performed to compare the longitudinal changes of cognition and functional connectivity in patients with type 2 diabetes and non-diabetic controls. A linear regression model was used to investigate the association between changes in functional connectivity and changes in cognitive performance. Results: Improvements in multiple cognitive domains were observed in diabetes; however, the enhanced functional connectivity at baseline decreased significantly. Moreover, the decrease in hippocampal connectivity was correlated with an increase in the accuracy of Stroop task and the decrease in posterior cingulate cortex connectivity was correlated with an increase in Montreal Cognitive Assessment in diabetes. Conclusion: This study suggests diabetes-related cognitive dysfunction is not a one-way process and the early-stage enhancement of brain connectivity was a potential "window period" for cognitive reversal.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos
6.
Ann Transl Med ; 10(2): 54, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35282042

RESUMO

Background: Severe burns, trauma and shock can cause intestinal epithelial barrier dysfunction, which can lead to intestinal endotoxemia and even sepsis and multi-organ dysfunction. Many studies have shown that histone deacetylase inhibitors (HDACIs) can improve cell tolerance to hypoxia and inflammation, thus protecting the functions of important organs in the body, and at the same time, inhibiting the degradation of tight junction (TJ) proteins, protecting the intercellular barrier, and reducing tissue edema and organ damage. However, the mechanism is unclear. Methods: Eighty male Sprague-Dawley rats (weighing 280-300 g) with a 50% total body surface area full-thickness dermal burn were randomly assigned to 4 groups (20 rats/group): sham control (SC group), scald + normal saline (SN group), scald + 2-methyl-2pentenoic acid (2M2P group), and scald + valproic acid (VPA group). After scalding, we measured the following parameters at various time intervals postburn injury: intestinal mucosal injury score, diamine oxidase (DAO) activity, intestinal protein expression of acetyl histone H3 at K9 (Ac-H3K9), hypoxia inducible factor 1α (HIF-1α), erythropoietin (EPO), zonula occludens-1 (ZO-1), endothelial nitric oxide synthase (eNOS) content, nitric oxide (NO) content, and intestinal mucosal blood flow (IMBF). Results: Intestinal mucosa showed significant morphologic injury at 4 and 8 hours after scalding that was attenuated by VPA. DAO activity in the VPA group was significantly decreased compared with the other scald groups. At 4 and 8 hours after scalding, VPA enhanced Ac-H3K9 and ZO-1 expression and decreased HIF-1α and EPO expression in the intestine compared with the other scald groups. At 4 and 8 hours after scalding, eNOS and NO protein content and IMBF in the VPA group were markedly increased compared with the other scald groups. Conclusions: HDACIs attenuated intestinal mucosal injury in fatally scalded rats. This may have involved VPA enhancing Ac-H3K9 and ZO-1 expression, inhibiting HIF-1α and EPO expression and inducing eNOS and NO increments.

7.
Hypertension ; 79(4): e73-e85, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35144478

RESUMO

BACKGROUND: Low serum chloride (Cl-) level is considered an independent predictor of cardiovascular mortality associated with chronic hypertension. However, the underlying mechanisms are unknown. ClC-5, a member of the Cl- channel family, is sensitive to changes in intracellular and extracellular Cl- concentration and conducts outwardly rectifying Cl- currents. The aims of this study were to determine if ClC-5 is regulated by low extracellular Cl-, clarify its putative roles in hypertension-induced cerebrovascular remodeling, and elucidate the associated underlying mechanisms. METHODS: Whole-cell patch technique, intracellular Cl- concentration measurements, flow cytometry, Western blot, Clcn5 knockdown (Clcn5-/y), and adenovirus-mediated ClC-5 overexpression mice, 2-kidney, 2-clip, and angiotensin II infusion-induced hypertensive models were used. RESULTS: We found that low extracellular Cl- evoked a ClC-5-dependent Cl- current that was abolished by ClC-5 depletion in basilar artery smooth muscle cells (BASMCs). ClC-5 was upregulated in the arterial tissues of rats and patients with hypertension. Low Cl--induced current and ClC-5 protein expression positively correlated with basilar artery remodeling during hypertension. ClC-5 knockdown ameliorated hypertension-induced cerebrovascular remodeling and smooth muscle cell proliferation, whereas ClC-5 overexpression mice exhibited the opposite phenotype. ClC-5-dependent Cl- efflux induced by low extracellular Cl- activated WNK1 (lysine-deficient protein kinase 1) which, in turn, activated AKT (protein kinase B), and culminated in BASMC proliferation and vascular remodeling. CONCLUSIONS: ClC-5 mediates low extracellular Cl-induced Cl- currents in BASMCs and regulates hypertension-induced cerebrovascular remodeling by promoting BASMC proliferation via the WNK1/AKT signaling pathway.


Assuntos
Hipertensão , Proteínas Proto-Oncogênicas c-akt , Animais , Proliferação de Células , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Humanos , Camundongos , Miócitos de Músculo Liso/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
8.
Cell Prolif ; 54(12): e13146, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34725866

RESUMO

OBJECTIVES: Recent studies revealed LRRC8A to be an essential component of volume-regulated anion channel (VRAC), which regulates cellular volume homeostasis. However, evidence for the contribution of LRRC8A-dependent VRAC activity in vascular smooth muscle cells (VSMCs) is still lacking, and the relevant functional role of LRRC8A in VSMCs remains unknown. The primary goal of this study was to elucidate the role of LRRC8A in VRAC activity in VSMCs and the functional role of LRRC8A in cerebrovascular remodeling during hypertension. MATERIALS AND METHODS: siRNA-mediated knockdown and adenovirus-mediated overexpression of LRRC8A were used to elucidate the electrophysiological properties of LRRC8A in basilar smooth muscle cells (BASMCs). A smooth muscle-specific overexpressing transgenic mouse model was used to investigate the functional role of LRRC8A in cerebrovascular remodeling. RESULTS: LRRC8A is essential for volume-regulated chloride current (ICl, Vol ) in BASMCs. Overexpression of LRRC8A induced a voltage-dependent Cl- current independently of hypotonic stimulation. LRRC8A regulated BASMCs proliferation through activation of WNK1/PI3K-p85/AKT axis. Smooth muscle-specific upregulation of LRRC8A aggravated Angiotensin II-induced cerebrovascular remodeling in mice. CONCLUSIONS: LRRC8A is an essential component of VRAC and is required for cell volume homeostasis during osmotic challenge in BASMCs. Smooth muscle specific overexpression of LRRC8A increases BASMCs proliferation and substantially aggravates basilar artery remodeling, revealing a potential therapeutic target for vascular remodeling in hypertension.


Assuntos
Artéria Basilar/metabolismo , Circulação Cerebrovascular , Hipertensão/metabolismo , Proteínas de Membrana/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Remodelação Vascular , Animais , Masculino , Ratos , Ratos Sprague-Dawley
9.
Eur Heart J ; 42(47): 4847-4861, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34570211

RESUMO

AIMS: Our previous study demonstrated that Ca2+ influx through the Orai1 store-operated Ca2+ channel in macrophages contributes to foam cell formation and atherosclerosis via the calcineurin-ASK1 pathway, not the classical calcineurin-nuclear factor of activated T-cell (NFAT) pathway. Moreover, up-regulation of NFATc3 in macrophages inhibits foam cell formation, suggesting that macrophage NFATc3 is a negative regulator of atherogenesis. Hence, this study investigated the precise role of macrophage NFATc3 in atherogenesis. METHODS AND RESULTS: Macrophage-specific NFATc3 knockout mice were generated to determine the effect of NFATc3 on atherosclerosis in a mouse model of adeno-associated virus-mutant PCSK9-induced atherosclerosis. NFATc3 expression was decreased in macrophages within human and mouse atherosclerotic lesions. Moreover, NFATc3 levels in peripheral blood mononuclear cells from atherosclerotic patients were negatively associated with plaque instability. Furthermore, macrophage-specific ablation of NFATc3 in mice led to the atherosclerotic plaque formation, whereas macrophage-specific NFATc3 transgenic mice exhibited the opposite phenotype. NFATc3 deficiency in macrophages promoted foam cell formation by potentiating SR-A- and CD36-meditated lipid uptake. NFATc3 directly targeted and transcriptionally up-regulated miR-204 levels. Mature miR-204-5p suppressed SR-A expression via canonical regulation. Unexpectedly, miR-204-3p localized in the nucleus and inhibited CD36 transcription. Restoration of miR-204 abolished the proatherogenic phenotype observed in the macrophage-specific NFATc3 knockout mice, and blockade of miR-204 function reversed the beneficial effects of NFATc3 in macrophages. CONCLUSION: Macrophage NFATc3 up-regulates miR-204 to reduce SR-A and CD36 levels, thereby preventing foam cell formation and atherosclerosis, indicating that the NFATc3/miR-204 axis may be a potential therapeutic target against atherosclerosis.


Assuntos
Aterosclerose , MicroRNAs , Animais , Aterosclerose/genética , Células Espumosas , Humanos , Leucócitos Mononucleares , Camundongos , MicroRNAs/genética , Fatores de Transcrição NFATC/genética , Pró-Proteína Convertase 9
10.
Eur J Pharmacol ; 898: 173997, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33676941

RESUMO

Hypotonic stimulus enlarges cell volume and increased cell proliferation with the exact mechanisms unknown. Glucocorticoid-induced kinase-1 (SGK1) is a serine/threonine kinase that can be regulated by osmotic pressure. We have revealed that SGK1 was activated by hypotonic solution-induced lowering of intracellular Cl- concentration. Therefore, we further examined whether SGK1 mediated hypotonic solution-induced proliferation and the internal mechanisms in basilar smooth muscle cells (BASMCs). In the present study, BrdU incorporation assay, flow cytometry, western blotting were performed to evaluate cell viability, cell cycle transition, and the expression of cell cycle regulators and other related proteins. We found that silence of SGK1 largely blunted hypotonic challenge-induced increase in cell viability and cell cycle transition from G0/G1 phase to S phase, whereas overexpression of SGK1 showed the opposite effects. The effect of SGK1 on proliferation was related to the upregulation of cyclin D1 and cyclin E1, and the downregulation of p27 and p21, which is mediated by the interaction between SGK1 and cAMP responsive element-binding protein (CREB). Moreover, we overexpressed ClC-3 Cl- channel to further verify the role of SGK1 in low Cl- environment-induced proliferation. The results revealed that overexpression of ClC-3 further enhanced hypotonic solution-induced cell viability, cell cycle transition, and CREB activation, which were alleviated or potentiated by silencing or overexpression of SGK1. In summary, this study provides compelling evidences that SGK1, as a Cl--sensitive kinase, is a critical link between low osmotic pressure and proliferation in BASMCs, and shed a new light on the treatment of proliferation-associated cardiovascular diseases.


Assuntos
Proliferação de Células/efeitos dos fármacos , Canais de Cloreto/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Soluções Hipotônicas/farmacologia , Proteínas Imediatamente Precoces/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Artéria Basilar/efeitos dos fármacos , Artéria Basilar/enzimologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Canais de Cloreto/genética , Proteínas Imediatamente Precoces/genética , Masculino , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Pressão Osmótica , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Ratos Sprague-Dawley , Transdução de Sinais
11.
J Clin Endocrinol Metab ; 106(6): 1566-1575, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33711158

RESUMO

CONTEXT: Although diabetic peripheral neuropathy (DPN) is predominantly considered a disorder of the peripheral nerves, some evidence for central nervous system involvement has recently emerged. However, whether or to what extent the microstructure of central somatosensory tracts may be injured remains unknown. OBJECTIVE: This work aimed to detect the microstructure of central somatosensory tracts in type 2 diabetic patients and to correlate it with the severity of DPN. METHODS: A case-control study at a tertiary referral hospital took place with 57 individuals with type 2 diabetes (25 with DPN, 32 without DPN) and 33 nondiabetic controls. The fractional anisotropy (FA) values of 2 major somatosensory tracts (the spinothalamic tract and its thalamocortical [spino-thalamo-cortical, STC] pathway, the medial lemniscus and its thalamocortical [medial lemnisco-thalamo-cortical, MLTC] pathway) were assessed based on diffusion tensor tractography. Regression models were further applied to detect the association of FA values with the severity of DPN in diabetic patients. RESULTS: The mean FA values of left STC and left MLTC pathways were significantly lower in patients with DPN than those without DPN and controls. Moreover, FA values of left STC and left MLTC pathways were significantly associated with the severity of DPN (expressed as Toronto Clinical Scoring System values) in patients after adjusting for multiple confounders. CONCLUSION: Our findings demonstrated the axonal degeneration of central somatosensory tracts in type 2 diabetic patients with DPN. The parallel disease progression of the intracranial and extracranial somatosensory system merits further attention to the central nerves in diabetic patients with DPN.


Assuntos
Neuropatias Diabéticas/patologia , Substância Cinzenta/ultraestrutura , Córtex Somatossensorial/ultraestrutura , Adulto , Estudos de Casos e Controles , China , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/psicologia , Neuropatias Diabéticas/diagnóstico , Neuropatias Diabéticas/psicologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Prognóstico , Índice de Gravidade de Doença , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/patologia
12.
Nat Med ; 27(3): 411-418, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33462448

RESUMO

Animal studies implicate meningeal lymphatic dysfunction in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease (PD). However, there is no direct evidence in humans to support this role1-5. In this study, we used dynamic contrast-enhanced magnetic resonance imaging to assess meningeal lymphatic flow in cognitively normal controls and patients with idiopathic PD (iPD) or atypical Parkinsonian (AP) disorders. We found that patients with iPD exhibited significantly reduced flow through the meningeal lymphatic vessels (mLVs) along the superior sagittal sinus and sigmoid sinus, as well as a notable delay in deep cervical lymph node perfusion, compared to patients with AP. There was no significant difference in the size (cross-sectional area) of mLVs in patients with iPD or AP versus controls. In mice injected with α-synuclein (α-syn) preformed fibrils, we showed that the emergence of α-syn pathology was followed by delayed meningeal lymphatic drainage, loss of tight junctions among meningeal lymphatic endothelial cells and increased inflammation of the meninges. Finally, blocking flow through the mLVs in mice treated with α-syn preformed fibrils increased α-syn pathology and exacerbated motor and memory deficits. These results suggest that meningeal lymphatic drainage dysfunction aggravates α-syn pathology and contributes to the progression of PD.


Assuntos
Drenagem , Vasos Linfáticos/fisiopatologia , Meninges/fisiopatologia , Doença de Parkinson/fisiopatologia , Progressão da Doença , Humanos , Imageamento por Ressonância Magnética , Meninges/diagnóstico por imagem , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , alfa-Sinucleína/metabolismo
13.
Theranostics ; 10(9): 3980-3993, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226533

RESUMO

Rationale: Transmembrane member 16A (TMEM16A) is a component of calcium-activated chloride channels that regulate vascular smooth muscle cell (SMC) proliferation and remodeling. Autophagy, a highly conserved cellular catabolic process in eukaryotes, exerts important physiological functions in vascular SMCs. In the current study, we investigated the relationship between TMEM16A and autophagy during vascular remodeling. Methods: We generated a transgenic mouse that overexpresses TMEM16A specifically in vascular SMCs to verify the role of TMEM16A in vascular remodeling. Techniques employed included immunofluorescence, electron microscopy, co-immunoprecipitation, and Western blotting. Results: Autophagy was activated in aortas from angiotensin II (AngII)-induced hypertensive mice with decreased TMEM16A expression. The numbers of light chain 3B (LC3B)-positive puncta in aortas correlated with the medial cross-sectional aorta areas and TMEM16A expression during hypertension. SMC-specific TMEM16A overexpression markedly inhibited AngII-induced autophagy in mouse aortas. Moreover, in mouse aortic SMCs (MASMCs), AngII-induced autophagosome formation and autophagic flux were blocked by TMEM16A upregulation and were promoted by TMEM16A knockdown. The effect of TMEM16A on autophagy was independent of the mTOR pathway, but was associated with reduced kinase activity of the vacuolar protein sorting 34 (VPS34) enzyme. Overexpression of VPS34 attenuated the effect of TMEM16A overexpression on MASMC proliferation, while the effect of TMEM16A downregulation was abrogated by a VPS34 inhibitor. Further, co-immunoprecipitation assays revealed that TMEM16A interacts with p62. TMEM16A overexpression inhibited AngII-induced p62-Bcl-2 binding and enhanced Bcl-2-Beclin-1 interactions, leading to suppression of Beclin-1/VPS34 complex formation. However, TMEM16A downregulation showed the opposite effects. Conclusion: TMEM16A regulates the four-way interaction between p62, Bcl-2, Beclin-1, and VPS34, and coordinately prevents vascular autophagy and remodeling.


Assuntos
Anoctamina-1/fisiologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Remodelação Vascular , Animais , Autofagia , Células Cultivadas , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Transcrição TFIIH/metabolismo
14.
Acta Pharmacol Sin ; 41(8): 1073-1084, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32139897

RESUMO

Serum- and glucocorticoid-inducible kinease-1 (SGK1) is a serine/threonine kinase regulated by hypotonic stimuli, which is involved in regulation of cell cycle and apoptosis. Our previous study shows that activation of volume-regulated Cl- channels (VRCCs) protects rat basilar artery smooth muscle cells (BASMCs) against hydrogen peroxide (H2O2)-induced apoptosis. In the present study, we investigated whether SGK1 was involved in the protective effect of VRCCs in BASMCs. We showed that hypotonic challenge significantly reduced H2O2-induced apoptosis, and increased SGK1 phosphorylation, but did not affect SGK1 protein expression. The protective effect of hypotonic challenge against H2O2-induced apoptosis was mediated through inhibiting mitochondria-dependent apoptotic pathway, evidenced by increased Bcl-2/Bax ratio, stabilizing mitochondrial membrane potential (MMP), decreased cytochrome c release from the mitochondria to the cytoplasm, and inhibition of the activation of caspase-9 and caspase-3. These protective effects of hypotonic challenge against H2O2-induced apoptosis was diminished and enhanced, respectively, by SGK1 knockdown and overexpression. We further revealed that SGK1 activation significantly increased forkhead box O3a (FOXO3a) phosphorylation, and then inhibited the translocation of FOXO3a into nucleus and the subsequent expression of Bcl-2 interacting mediator of cell death (Bim). In conclusion, SGK1 mediates the protective effect of VRCCs against H2O2-induced apoptosis in BASMCs via inhibiting FOXO3a/Bim signaling pathway. Our results provide compelling evidences that SGK1 is a critical link between VRCCs and apoptosis, and shed a new light on the treatment of vascular apoptosis-associated diseases, such as vascular remodeling, angiogenesis, and atherosclerosis.


Assuntos
Apoptose/efeitos dos fármacos , Canais de Cloreto/fisiologia , Peróxido de Hidrogênio/farmacologia , Proteínas Imediatamente Precoces/fisiologia , Pressão Osmótica/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais/fisiologia , Animais , Artéria Basilar/citologia , Proteína 11 Semelhante a Bcl-2/metabolismo , Regulação para Baixo , Proteína Forkhead Box O3/metabolismo , Masculino , Miócitos de Músculo Liso , Ratos Sprague-Dawley
15.
Nat Commun ; 11(1): 934, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071315

RESUMO

α-Synucleinopathies are characterized by autonomic dysfunction and motor impairments. In the pure autonomic failure (PAF), α-synuclein (α-Syn) pathology is confined within the autonomic nervous system with no motor features, but mouse models recapitulating PAF without motor dysfunction are lacking. Here, we show that in TgM83+/- mice, inoculation of α-Syn preformed fibrils (PFFs) into the stellate and celiac ganglia induces spreading of α-Syn pathology only through the autonomic pathway to both the central nervous system (CNS) and the autonomic innervation of peripheral organs bidirectionally. In parallel, the mice develop autonomic dysfunction, featured by orthostatic hypotension, constipation, hypohidrosis and hyposmia, without motor dysfunction. Thus, we have generated a mouse model of pure autonomic dysfunction caused by α-Syn pathology. This model may help define the mechanistic link between transmission of pathological α-Syn and the cardinal features of autonomic dysfunction in α-synucleinopathy.


Assuntos
Gânglios Autônomos/fisiopatologia , Insuficiência Autonômica Pura/patologia , Sinucleinopatias/patologia , alfa-Sinucleína/metabolismo , Animais , Técnicas de Observação do Comportamento , Modelos Animais de Doenças , Gânglios Autônomos/patologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Agregados Proteicos , Insuficiência Autonômica Pura/genética , Insuficiência Autonômica Pura/fisiopatologia , Sinucleinopatias/genética , Sinucleinopatias/fisiopatologia , alfa-Sinucleína/administração & dosagem , alfa-Sinucleína/genética
16.
Acta Pharmacol Sin ; 41(2): 208-217, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31484993

RESUMO

TMEM16A Ca2+-activated chloride channel (CaCC) plays an essential role in vascular homeostasis. In this study we investigated the molecular mechanisms underlying downregulation of TMEM16A CaCC activity during hypertension. In cultured basilar artery smooth muscle cells (BASMCs) isolated from 2k2c renohypertesive rats, treatment with angiotensin II (0.125-1 µM) dose-dependently increased endophilin A2 levels and decreased TMEM16A expression. Similar phenomenon was observed in basilar artery isolated from 2k2c rats. We then used whole-cell recording to examine whether endophilin A2 could regulate TMEM16A CaCC activity in BASMCs and found that knockdown of endophilin A2 significantly enhanced CaCC activity, whereas overexpression of endophilin A2 produced the opposite effect. Overexpression of endophilin A2 did not affect the TMEM16A mRNA level, but markedly decreased TMEM16A protein level in BASMCs by inducing ubiquitination and autophagy of TMEM16A. Ubiquitin-binding receptor p62 (SQSTM1) could bind to ubiquitinated TMEM16A and resulted in a process of TMEM16A proteolysis in autophagosome/lysosome. These data provide new insights into the regulation of TMEM16A CaCC activity by endophilin A2 in BASMCs, which partly explains the mechanism of angiotensin-II-induced TMEM16A inhibition during hypertension-induced vascular remodeling.


Assuntos
Aciltransferases/metabolismo , Anoctamina-1/metabolismo , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Aciltransferases/genética , Angiotensina II/metabolismo , Animais , Autofagia/fisiologia , Células Cultivadas , Regulação para Baixo , Técnicas de Silenciamento de Genes , Hipertensão/fisiopatologia , Masculino , Miócitos de Músculo Liso/metabolismo , Ratos , Ratos Sprague-Dawley , Remodelação Vascular/fisiologia
17.
Biochem Biophys Res Commun ; 518(2): 278-285, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31420161

RESUMO

Uncontrollable vascular smooth cell proliferation is responsible for vascular remodeling during hypertension development. Glyoxalase 1 (GLO1), the major enzyme detoxifying methylglyoxal, has a critical role in regulating proliferation of several cell types. However, little is known whether GLO1 is involved in cerebrovascular remodeling and basilar smooth muscle cell (BASMC) proliferation during hypertension. Here we explored the role of GLO1 in angiotensin II (Ang II)-induced cerebrovascular remodeling and proliferation of BASMCs and the underlying mechanisms. The protein expression of GLO1 in basilar arteries from hypertensive mice was decreased, and GLO1 expression was negatively correlated with medial cross-sectional area and blood pressure in basilar arteries during hypertension. Knockdown of GLO1 promoted while overexpression of GLO1 prevented Ang II-induced cell proliferation and cell cycle transition in BASMCs. These results were related to the inhibitory effects of GLO1 on PI3K/AKT/CDK2 cascade activation upon Ang II treatment. In addition, in vivo study, GLO1 overexpression with adeno-associated virus harboring GLO1 cDNA improved cerebrovascular remodeling in basilar artery tissue during Ang II-induced hypertension development. These data indicate that GLO1 reduction mediates cerebrovascular modeling via PI3K/AKT/CDK2 cascade-dependent BASMC proliferation. GLO1 acts as a negative regulator of hypertension-induced cerebrovascular remodeling and targeting GLO1 may be a novel therapeutic strategy to prevent hypertension-associated cardiovascular complications such as stroke.


Assuntos
Hipertensão/patologia , Lactoilglutationa Liase/metabolismo , Miócitos de Músculo Liso/patologia , Remodelação Vascular , Angiotensina II/metabolismo , Animais , Encéfalo/irrigação sanguínea , Proliferação de Células , Células Cultivadas , Hipertensão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Ratos Sprague-Dawley
18.
Free Radic Biol Med ; 143: 288-299, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31445205

RESUMO

Transient Receptor Potential Melastatin-2 (TRPM2) is a nonselective cation channel mediating Ca2+ influx in response to oxidative stress. Given that insulin resistance-related endothelial dysfunction in obesity attributes to fatty-acid-induced reactive oxygen species (ROS) overproduction, in this study, we addressed the possible role of TRPM2 in obesity-related endothelial insulin resistance and the underlying mechanisms. Whole-cell patch clamp technique, intracellular Ca2+ concentration measurement, western blot, vasorelaxation assay, and high-fat diet (HFD)-induced obese model were employed to assess the relationship between TRPM2 and endothelial insulin response. We found that both the expression and activity of TRPM2 were higher in endothelial cells of obese mice. Palmitate rose a cationic current in endothelial cells which was inhibited or enlarged by TRPM2 knockdown or overexpression. Silencing of TRPM2 remarkably improved insulin-induced endothelial Akt activation, nitric oxide synthase (eNOS) phosphorylation and nitric oxide (NO) production, while TRPM2 overexpression resulted in the opposite effects. Furthermore, TRPM2-mediated Ca2+ entry, CaMKII activation and the following activation of PERK/ATF4/TRB3 cascade were involved in the mechanism of obesity or palmitate-induced endothelial insulin resistance. Notably, in vivo study, knockdown of TRPM2 with adeno-associated virus harboring short-hairpin RNA (shRNA) against TRPM2 alleviated endothelial insulin resistance and ameliorated endothelium-dependent vasodilatation in obese mice. Thus, these results suggest that TRPM2-activated Ca2+ signaling is necessary to induce insulin resistance-related endothelial dysfunction in obesity. Downregulation or pharmacological inhibition of TRPM2 channels may lead to the development of effective drugs for treatment of endothelial dysfunction associated with oxidative stress state.


Assuntos
Cálcio/metabolismo , Endotélio Vascular/patologia , Ácidos Graxos não Esterificados/toxicidade , Peróxido de Hidrogênio/toxicidade , Resistência à Insulina , Obesidade/fisiopatologia , Canais de Cátion TRPM/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Oxidantes/toxicidade , Estresse Oxidativo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Canais de Cátion TRPM/genética , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
19.
J Mol Cell Cardiol ; 134: 131-143, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31301303

RESUMO

Cerebrovascular remodeling is the leading factor for stroke and characterized by increased extracellular matrix deposition, migration and proliferation of vascular smooth muscle cells, and inhibition of their apoptosis. TMEM16A is an important component of Ca2+-activated Cl- channels. Previously, we showed that downregulation of TMEM16A in the basilar artery was negatively correlated with cerebrovascular remodeling during hypertension. However, it is unclear whether TMEM16A participates in angiotensin II (Ang II)-induced vascular remodeling in mice that have TMEM16A gene modification. In this study, we generated a transgenic mouse that overexpresses TMEM16A specifically in vascular smooth muscle cells. We observed that vascular remodeling in the basilar artery during Ang II-induced hypertension was significantly suppressed upon vascular smooth muscle-specific overexpression of TMEM16A relative to control mice. Specifically, we observed a large reduction in the deposition of fibronectin and collagen I. The expression of matrix metalloproteinases (MMP-2, MMP-9, and MMP-14), and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) were upregulated in the basilar artery during Ang II-induced hypertension, but this was suppressed upon overexpression of TMEM16A in blood vessels. Furthermore, TMEM16A overexpression alleviated the overactivity of the canonical TGF-ß1/Smad3, and non-canonical TGF-ß1/ERK and JNK pathways in the basilar artery during Ang II-induced hypertension. These in vivo results were similar to the results derived in vitro with basilar artery smooth muscle cells stimulated by Ang II. Moreover, we observed that the inhibitory effect of TMEM16A on MMPs was mediated by decreasing the activation of WNK1, which is a Cl--sensitive serine/threonine kinase. In conclusion, this study demonstrates that TMEM16A protects against cerebrovascular remodeling during hypertension by suppressing extracellular matrix deposition. We also showed that TMEM16A exerts this effect by reducing the expression of MMPs via inhibiting WNK1, and decreasing the subsequent activities of TGF-ß1/Smad3, ERK, and JNK. Accordingly, our results suggest that TMEM16A may serve as a novel therapeutic target for vascular remodeling.


Assuntos
Angiotensina II/farmacologia , Anoctamina-1/genética , Circulação Cerebrovascular , Matriz Extracelular/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Remodelação Vascular , Animais , Anoctamina-1/metabolismo , Anoctamina-1/fisiologia , Células Cultivadas , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/genética , Citoproteção/efeitos dos fármacos , Citoproteção/genética , Regulação para Baixo/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Expressão Gênica/fisiologia , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos/genética , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/genética
20.
Acta Pharmacol Sin ; 40(12): 1532-1543, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31165783

RESUMO

Obesity induces accumulation of adipose tissue macrophages (ATMs) and ATM-driven inflammatory responses that promote the development of glucose and lipid metabolism disorders. ClC-3 chloride channel/antiporter, encoded by the Clcn3, is critical for some basic cellular functions. Our previous work has shown significant alleviation of type 2 diabetes in Clcn3 knockout (Clcn3-/-) mice. In the present study we investigated the role of Clcn3 in high-fat diet (HFD)-induced obesity and ATM inflammation. To establish the mouse obesity model, both Clcn3-/- mice and wild-type mice were fed a HFD for 4 or 16 weeks. The metabolic parameters were assessed and the abdominal total adipose tissue was scanned using computed tomography. Their epididymal fat pad tissue and adipose tissue stromal vascular fraction (SVF) cells were isolated for analyses. We found that the HFD-fed Clcn3-/- mice displayed a significant decrease in obesity-induced body weight gain and abdominal visceral fat accumulation as well as an improvement of glucose and lipid metabolism as compared with HFD-fed wild-type mice. Furthermore, the Clcn3 deficiency significantly attenuated HFD-induced ATM accumulation, HFD-increased F4/80+ CD11c+ CD206- SVF cells as well as HFD-activated TLR-4/NF-κB signaling in epididymal fat tissue. In cultured human THP-1 macrophages, adenovirus-mediated transfer of Clcn3 specific shRNA inhibited, whereas adenovirus-mediated cDNA overexpression of Clcn3 enhanced lipopolysaccharide-induced activation of NF-κB and TLR-4. These results demonstrate a novel role for Clcn3 in HFD-induced obesity and ATM inflammation.


Assuntos
Tecido Adiposo Branco/metabolismo , Canais de Cloreto/genética , Inflamação/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Tecido Adiposo Branco/patologia , Animais , Linhagem Celular , Dieta Hiperlipídica , Humanos , Camundongos Knockout , NF-kappa B/metabolismo , Obesidade/genética , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...