Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Vis Exp ; (198)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37607105

RESUMO

Hepatocellular carcinoma (HCC) is a highly prevalent and lethal tumor worldwide and its late discovery and lack of effective specific therapeutic agents necessitate further research into its pathogenesis and treatment. Organoids, a novel model that closely resembles native tumor tissue and can be cultured in vitro, have garnered significant interest in recent years, with numerous reports on the development of organoid models for liver cancer. In this study, we have successfully optimized the procedure and established a culture protocol that enables the formation of larger-sized HCC organoids with stable passaging and culture conditions. We have comprehensively outlined each step of the procedure, covering the entire process of HCC tissue dissociation, organoid plating, culture, passaging, cryopreservation, and resuscitation, and provided detailed precautions in this paper. These organoids exhibit genetic similarity to the original HCC tissues and can be utilized for diverse applications, including the identification of potential therapeutic targets for tumors and subsequent drug development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Descoberta de Drogas , Desenvolvimento de Medicamentos , Organoides
3.
STAR Protoc ; 3(4): 101921, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36595904

RESUMO

Here, we present a detailed protocol for the identification of potential oncofetal targets for hepatocellular carcinoma (HCC) patients through a hepatocyte differentiation model and a sorafenib refractory cell-line-derived xenograft model. We describe the procedures of tumor sphere formation, organoid generation, and subcutaneous tumor formation for functional studies. We then detail the procedures of immunohistochemistry and immunofluorescence for examination of changes in lineage-specific markers. Finally, we describe the development of antibody-based therapeutics targeting tumor lineage plasticity in HCC. For complete details on the use and execution of this protocol, please refer to Kong et al. (2021).1.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Resistencia a Medicamentos Antineoplásicos , Sorafenibe/uso terapêutico , Linhagem Celular
4.
Nat Commun ; 12(1): 7142, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880251

RESUMO

Tumour lineage plasticity is an emerging hallmark of aggressive tumours. Tumour cells usually hijack developmental signalling pathways to gain cellular plasticity and evade therapeutic targeting. In the present study, the secreted protein growth and differentiation factor 1 (GDF1) is found to be closely associated with poor tumour differentiation. Overexpression of GDF1 suppresses cell proliferation but strongly enhances tumour dissemination and metastasis. Ectopic expression of GDF1 can induce the dedifferentiation of hepatocellular carcinoma (HCC) cells into their ancestral lineages and reactivate a broad panel of cancer testis antigens (CTAs), which further stimulate the immunogenicity of HCC cells to immune-based therapies. Mechanistic studies reveal that GDF1 functions through the Activin receptor-like kinase 7 (ALK7)-Mothers against decapentaplegic homolog 2/3 (SMAD2/3) signalling cascade and suppresses the epigenetic regulator Lysine specific demethylase 1 (LSD1) to boost CTA expression. GDF1-induced tumour lineage plasticity might be an Achilles heel for HCC immunotherapy. Inhibition of LSD1 based on GDF1 biomarker prescreening might widen the therapeutic window for immune checkpoint inhibitors in the clinic.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Plasticidade Celular/efeitos dos fármacos , Fator 1 de Diferenciação de Crescimento/metabolismo , Fator 1 de Diferenciação de Crescimento/farmacologia , Imunoterapia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Neoplasias Testiculares/metabolismo
5.
Exp Hematol Oncol ; 10(1): 53, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34774101

RESUMO

Human gastrointestinal malignancies are highly heterogeneous cancers. Clinically, heterogeneity largely contributes to tumor progression and resistance to therapy. Heterogeneity within gastrointestinal cancers is defined by molecular subtypes in genomic and transcriptomic analyses. Cancer stem cells (CSCs) have been demonstrated to be a major source of tumor heterogeneity; therefore, assessing tumor heterogeneity by CSC trait-guided classification of gastrointestinal cancers is essential for the development of effective therapies. CSCs share critical features with embryonic stem cells (ESCs). Molecular investigations have revealed that embryonic genes and developmental signaling pathways regulating the properties of ESCs or cell lineage differentiation are abnormally active and might be oncofetal drivers in certain tumor subtypes. Currently, multiple strategies allow comprehensive identification of tumor subtype-specific oncofetal signatures and evaluation of subtype-specific therapies. In this review, we summarize current knowledge concerning the molecular classification of gastrointestinal malignancies based on CSC features and elucidate their clinical relevance. We also outline strategies for molecular subtype identification and subtype-based therapies. Finally, we explore how clinical implementation of tumor classification by CSC subtype might facilitate the development of more effective personalized therapies for gastrointestinal cancers.

6.
Cell Death Dis ; 12(10): 950, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654797

RESUMO

Autophagy is an important biological process in normal cells. However, how it affects tumor progression still remains poorly understood. Herein, we demonstrated that the oncogenic protein Chromodomain-helicase-DNA-binding-protein 1-like gene (CHD1L) might promote HCC cells migration and metastasis through autophagy. CHD1L could bind to the promotor region of Zinc finger with KRAB and SCAN domain 3 (ZKSCAN3), a pivotal autophagy suppressor, and inhibit its transcription. We established inducible CHD1L conditional knockout cell line (CHD1L-iKO cell) and found that the deletion of CHD1L significantly increased ZKSCAN3 expression both at mRNA and protein level. Deletion of CHD1L impaired the autophagic flux and migration of HCC cells, while specifically inhibiting ZKSCAN3 blocked these effects. Further exploration demonstrated that the enhanced tumor cell migration and metastasis induced by CHD1L was mediated through ZKSCAN3-induced autophagic degradation of Paxillin. In summary, we have characterized a previously unknown function of CHD1L in regulating tumor migration via ZKSCAN3-mediated autophagy in HCC. Further inhibition of CHD1L and its downstream autophagy signaling might shed new light on cancer therapeutics.


Assuntos
Autofagia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Movimento Celular , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Fatores de Transcrição/metabolismo , Animais , Proteína 5 Relacionada à Autofagia/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/ultraestrutura , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/ultraestrutura , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Associadas aos Microtúbulos/metabolismo , Metástase Neoplásica , Paxilina/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
7.
Cell Death Dis ; 12(10): 891, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588420

RESUMO

Chromodomain helicase/ATPase DNA-binding protein 1-like gene (CHD1L) has been characterized to be a driver gene in hepatocellular carcinoma (HCC). However, the intrinsic connections between CHD1L and intestinal dysbacteriosis-related inflammation reaction in HCC progression remain incompletely understood. In this study, a specific correlation between CHD1L and nonmuscle isoform of myosin light chain kinase (nmMLCK/nmMYLK), a newly identified molecule associated NF-κB signaling transduction, was disclosed in HCC. CHD1L promotes nmMYLK expression and prevents lipopolysaccharide (LPS) induced tumor cell death. In vitro experiment demonstrated that overexpressed nmMYLK is essential for CHD1L to maintain HCC cell alive, while knocking down nmMYLK significantly attenuate the oncogenic roles of CHD1L. Mechanism analysis revealed that nmMYLK can prevent Caspase-8 from combining with MyD88, an important linker of TLRs signaling pathway, while, knocking down nmMYLK facilitate the MyD88 combines with Caspase-8 and lead to the proteolytic cascade of Caspase as well as the consequent cell apoptosis. Mechanism analysis showed that CHD1L promotes the nmMYLK expression potentially through upregulating the heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNP A2/B1) expression, which can bind to myosin light chain kinase (MYLK) pre-mRNA and lead to the regnant translation of nmMYLK. In summary, this work characterizes a previously unknown role of CHD1L in preventing LPS-induced tumor cell death through activating hnRNP A2/B1-nmMYLK axis. Further inhibition of CHD1L and its downstream signaling could be a novel promising strategy in HCC treatment.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Carcinoma Hepatocelular/patologia , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Neoplasias Hepáticas/patologia , Quinase de Cadeia Leve de Miosina/metabolismo , Animais , Apoptose/genética , Sequência de Bases , Carcinoma Hepatocelular/genética , Morte Celular , Proliferação de Células/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Lipopolissacarídeos , Neoplasias Hepáticas/genética , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Modelos Biológicos , NF-kappa B/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
9.
Biomark Res ; 9(1): 16, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663617

RESUMO

Chromodomain helicase/ATPase DNA binding protein 1-like gene (CHD1L) is a multifunctional protein participated in diverse cellular processes, including chromosome remodeling, cell differentiation and development. CHD1L is a regulator of chromosomal integrity maintenance, DNA repair and transcriptional regulation through its bindings to DNA. By regulating kinds of complex networks, CHD1L has been identified as a potent anti-apoptotic and pro-proliferative factor. CHD1L is also an oncoprotein since its overexpression leads to dysregulation of related downstream targets in various cancers. The latest advances in the functional molecular basis of CHD1L in normal cells will be described in this review. As the same time, we will describe the current understanding of CHD1L in terms of structure, characteristics, function and the molecular mechanisms underlying CHD1L in tumorigenesis. We inference that the role of CHD1L which involve in multiple cellular processes and oncogenesis is well worth further studying in basic biology and clinical relevance.

10.
Sci Transl Med ; 13(579)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536280

RESUMO

Tumor lineage plasticity is emerging as a critical mechanism of therapeutic resistance and tumor relapse. Highly plastic tumor cells can undergo phenotypic switching to a drug-tolerant state to avoid drug toxicity. Here, we investigate the transmembrane tight junction protein Claudin6 (CLDN6) as a therapeutic target related to lineage plasticity for hepatocellular carcinoma (HCC). CLDN6 was highly expressed in embryonic stem cells but markedly decreased in normal tissues. Reactivation of CLDN6 was frequently observed in HCC tumor tissues as well as in premalignant lesions. Functional assays indicated that CLDN6 is not only a tumor-associated antigen but also conferred strong oncogenic effects in HCC. Overexpression of CLDN6 induced phenotypic shift of HCC cells from hepatic lineage to biliary lineage, which was more refractory to sorafenib treatment. The enhanced tumor lineage plasticity and cellular identity change were potentially induced by the CLDN6/TJP2 (tight junction protein 2)/YAP1 (Yes-associated protein 1) interacting axis and further activation of the Hippo signaling pathway. A de novo anti-CLDN6 monoclonal antibody conjugated with cytotoxic agent (Mertansine) DM1 (CLDN6-DM1) was developed. Preclinical data on both HCC cell lines and primary tumors showed the potent antitumor efficiency of CLDN6-DM1 as a single agent or in combination with sorafenib in HCC treatment.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Imunoconjugados , Neoplasias Hepáticas , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Humanos , Imunoconjugados/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Recidiva Local de Neoplasia , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico
11.
Theranostics ; 11(1): 222-256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391472

RESUMO

Macroautophagy (hereafter called autophagy) is a highly conserved physiological process that degrades over-abundant or damaged organelles, large protein aggregates and invading pathogens via the lysosomal system (the vacuole in plants and yeast). Autophagy is generally induced by stress, such as oxygen-, energy- or amino acid-deprivation, irradiation, drugs, etc. In addition to non-selective bulk degradation, autophagy also occurs in a selective manner, recycling specific organelles, such as mitochondria, peroxisomes, ribosomes, endoplasmic reticulum (ER), lysosomes, nuclei, proteasomes and lipid droplets (LDs). This capability makes selective autophagy a major process in maintaining cellular homeostasis. The dysfunction of selective autophagy is implicated in neurodegenerative diseases (NDDs), tumorigenesis, metabolic disorders, heart failure, etc. Considering the importance of selective autophagy in cell biology, we systemically review the recent advances in our understanding of this process and its regulatory mechanisms. We emphasize the 'cargo-ligand-receptor' model in selective autophagy for specific organelles or cellular components in yeast and mammals, with a focus on mitophagy and ER-phagy, which are finely described as types of selective autophagy. Additionally, we highlight unanswered questions in the field, helping readers focus on the research blind spots that need to be broken.


Assuntos
Macroautofagia/fisiologia , Mitofagia/fisiologia , Autofagia/fisiologia , Humanos , Organelas
12.
Mol Cancer ; 20(1): 20, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-33485358

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common human malignancies worldwide with very poor prognosis. Resistance to targeted therapeutic drugs such as sorafenib remains one of the major challenges in clinical treatment. In the present study, PARP1 was found to be highly expressed in human embryonic stem cells, but progressively decreased upon specified hepatic differentiation. Reactivation of PARP1 expression was also detected in HCC residual tumors after sorafenib treatment in xenograft mouse model, indicating the potential important roles of PARP1 in stem cell pluripotency and HCC sorafenib treatment resistance. Overexpression of PARP1 was frequently observed in HCC patients, and closely associated with poor clinical outcome. Treatment of Sorafenib induced activation of DNA damage repair signaling, which is highly active and essential for maintenance of stem cell pluripotency in HCC residual tumors. PARP inhibitor Olaparib extensively suppressed the DNA damage repair signaling, and significantly inhibited the global pluripotent transcriptional network. The repression of key pluripotent transcriptional factors and DNA damage repair signaling by Olaparib was mainly through CHD1L-mediated condensation of the chromatin structure at their promotor regions. The global reshaping of the pluripotent transcriptome by Olaparib might reinforce Sorafenib in eliminating HCC residual tumors and enhance therapeutic efficiency.


Assuntos
Carcinoma Hepatocelular/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hepáticas/genética , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Transcriptoma , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Cromatina/genética , Cromatina/metabolismo , Dano ao DNA , Células-Tronco Embrionárias , Perfilação da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Sorafenibe/farmacologia
13.
Hepatol Int ; 14(4): 521-533, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32304089

RESUMO

BACKGROUND: Loss of terminal differentiation markers and gain of stem cell-like properties are a major hallmark of cancer malignant progression. Identification of novel biomarkers representing tumor developmental progeny and predictive of patients' prognosis would greatly benefit clinical cancer management. METHODS: Human embryonic stem cells were induced to differentiate into hepatocytes along hepatic lineages. Transcriptomic data from different liver developmental stages were analyzed combining with the RNA-seq data from The Cancer Genome Atlas (TCGA) project. Kaplan-Meier survival analysis and Cox regression analyses were used to analyze the clinical significance in HCC patients. RESULTS: A shifted expression pattern of claudin (CLDN) family genes were identified to be closely associated with liver development and tumor progression. Claudins with hepatic features were found to be significantly down-regulated and predicted better prognosis in HCC patients. Conversely, another set of claudins with embryonic stem cell features were found to be significantly up-regulated and predicted worse prognosis in HCC patients. A claudin signature score system was further established by combining the two sets of claudin genes. The newly established claudins signature could robustly predict HCC patients' prognosis in the training, testing, and independent validation cohorts. CONCLUSIONS: In the present study, we developed a novel embryonic developmental claudins signature to monitor the extent of tumor dedifferentiation in HCC from an in vitro hepatocyte differentiation model. The claudins signature might present a great potential in predicting prognostic significance in HCC as cell surface biomarkers, and provide novel therapeutic targets for precision oncology further in the clinic.


Assuntos
Carcinoma Hepatocelular/diagnóstico , Claudinas/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas/diagnóstico , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/mortalidade , China , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Masculino , Prognóstico , Modelos de Riscos Proporcionais
14.
Proc Natl Acad Sci U S A ; 117(11): 6103-6113, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123069

RESUMO

Clinical observation of the association between cancer aggressiveness and embryonic development stage implies the importance of developmental signals in cancer initiation and therapeutic resistance. However, the dynamic gene expression during organogenesis and the master oncofetal drivers are still unclear, which impeded the efficient elimination of poor prognostic tumors, including human hepatocellular carcinoma (HCC). In this study, human embryonic stem cells were induced to differentiate into adult hepatocytes along hepatic lineages to mimic liver development in vitro. Combining transcriptomic data from liver cancer patients with the hepatocyte differentiation model, the active genes derived from different hepatic developmental stages and the tumor tissues were selected. Bioinformatic analysis followed by experimental assays was used to validate the tumor subtype-specific oncofetal signatures and potential therapeutic values. Hierarchical clustering analysis revealed the existence of two subtypes of liver cancer with different oncofetal properties. The gene signatures and their clinical significance were further validated in an independent clinical cohort and The Cancer Genome Atlas database. Upstream activator analysis and functional screening further identified E2F1 and SMAD3 as master transcriptional regulators. Small-molecule inhibitors specifically targeting the oncofetal drivers extensively down-regulated subtype-specific developmental signaling and inhibited tumorigenicity. Liver cancer cells and primary HCC tumors with different oncofetal properties also showed selective vulnerability to their specific inhibitors. Further precise targeting of the tumor initiating steps and driving events according to subtype-specific biomarkers might eliminate tumor progression and provide novel therapeutic strategy.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Hepatócitos/patologia , Neoplasias Hepáticas/genética , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Animais , Biomarcadores Tumorais/antagonistas & inibidores , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Estudos de Coortes , Intervalo Livre de Doença , Fator de Transcrição E2F1/antagonistas & inibidores , Fator de Transcrição E2F1/metabolismo , Feminino , Perfilação da Expressão Gênica , Hepatectomia , Células-Tronco Embrionárias Humanas , Humanos , Hidroxiquinolinas/farmacologia , Hidroxiquinolinas/uso terapêutico , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico , Estimativa de Kaplan-Meier , Fígado/crescimento & desenvolvimento , Fígado/patologia , Fígado/cirurgia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Masculino , Camundongos , Pessoa de Meia-Idade , Prognóstico , Piridinas/farmacologia , Piridinas/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico , Transdução de Sinais/genética , Proteína Smad3/antagonistas & inibidores , Proteína Smad3/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Mol Cancer ; 19(1): 60, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188489

RESUMO

BACKGROUND: Metastasis causes the vast majority of colorectal carcinoma (CRC)-related deaths. However, little is known about the specific traits and underlying mechanisms of metastasis-initiating cells in primary CRC. And whether or not circular RNAs (circRNAs) take part in this particular event remain not adequately stated yet. METHODS: A screening method based on Transwell assay was first applied to build CRC subgroups with different metastatic potential. High throughput RNA sequencing was used to find out novel metastatic drivers in CRC metastasis-initiating step. A series of in vitro and in vivo assays were further applied to elucidate the functions and underlying molecular mechanisms of circRNAs in CRC metastasis. RESULTS: A circRNA consisting of exon 8-11 of LONP2, termed as circLONP2, was upregulated in metastasis-initiating CRC subgroups. Aberrant higher expression of circLONP2 was observed in primary CRC tissues with established metastasis, and along the invasive margin in metastatic site. High expression of circLONP2 predicted unfavorable overall survival. Functional studies revealed that circLONP2 could enhance the invasiveness of CRC cells in vitro, and targeting circLONP2 through anti-sense oligonucleotide (ASO) dramatically reduced the penetrance of metastasis to foreign organs in vivo. Mechanically, circLONP2 directly interacted with and promoted the processing of primary microRNA-17 (pri-miR-17), through recruiting DiGeorge syndrome critical region gene 8 (DGCR8) and Drosha complex in DDX1-dependent manner. Meanwhile, upregulated mature miR-17-5p could be assembled into exosomes and internalized by neighboring cells to enhance their aggressiveness. CONCLUSIONS: Our data indicate that circLONP2 acts as key metastasis-initiating molecule during CRC progression through modulating the intracellular maturation and intercellular transfer of miR-17, resulting in dissemination of metastasis-initiating ability in primary site and acceleration of metastasis formation in foreign organs. circLONP2 could serve as an effective prognostic predictor and/or novel anti-metastasis therapeutic target in CRC treatment.


Assuntos
Neoplasias Colorretais/patologia , RNA Helicases DEAD-box/metabolismo , Exossomos/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/secundário , MicroRNAs/genética , RNA Circular/genética , Proteases Dependentes de ATP/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , RNA Helicases DEAD-box/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Nus , Invasividade Neoplásica , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Nat Commun ; 10(1): 4695, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619685

RESUMO

Circular RNAs (circRNAs) have been implicated in cancer progression through largely unknown mechanisms. Herein, we identify an N6-methyladenosine (m6A) modified circRNA, circNSUN2, frequently upregulated in tumor tissues and serum samples from colorectal carcinoma (CRC) patients with liver metastasis (LM) and predicts poorer patient survival. The upregulated expression of circNSUN2 promotes LM in PDX metastasis models in vivo and accelerates cancer cells invasion in vitro. Importantly, N6-methyladenosine modification of circNSUN2 increases export to the cytoplasm. By forming a circNSUN2/IGF2BP2/HMGA2 RNA-protein ternary complex in the cytoplasm, circNSUN2 enhances the stability of HMGA2 mRNA to promote CRC metastasis progression. Clinically, the upregulated expressions of circNSUN2 and HMGA2 are more prevalent in LM tissues than in primary CRC tissues. These findings elucidate that N6-methyladenosine modification of circNSUN2 modulates cytoplasmic export and stabilizes HMGA2 to promote CRC LM, and suggest that circNSUN2 could represent a critical prognostic marker and/or therapeutic target for the disease.


Assuntos
Adenosina/análogos & derivados , Carcinoma/secundário , Neoplasias Colorretais/patologia , Proteína HMGA2/genética , Neoplasias Hepáticas/secundário , Metiltransferases/genética , RNA Circular/genética , Adenosina/metabolismo , Animais , Carcinoma/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Células HCT116 , Células HEK293 , Humanos , Neoplasias Hepáticas/genética , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
17.
Int J Gynecol Cancer ; 29(8): 1280-1284, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31570543

RESUMO

INTRODUCTION: The solute carrier family 12 member 5 (SLC12A5) gene is playing a putative oncogenic role in colorectal carcinoma. However, the status of SLC12A5 amplification and expression in ovarian carcinoma and its potential clinical and/or prognostic significance has not yet been investigated. METHODS: In the present study, semi-quantitative staining and fluorescence in situ hybridization were used to investigate SLC12A5 protein expression and gene amplification levels. Samples were obtained from archival, formalin-fixed, paraffin-embedded pathological specimens consisting of 30 normal ovaries, 30 ovarian cystadenomas, 30 borderline ovarian tumors, and 147 invasive ovarian carcinomas. SLC12A5 immunohistochemical staining results, pathological parameters, and patient prognosis were then evaluated using various statistical models. Patient survival rate was also assessed using receiver-operator curve analysis. RESULTS: Our results revealed no SLC12A5 protein overexpression in normal ovaries. However, 7% of cystadenomas had SLC12A5 protein overexpression along with 17% of borderline tumors and 37% of ovarian carcinomas (P<0.01). Amplification of SLC12A5 was detected in 10.3% of ovarian carcinomas. Further correlational analyses showed that SLC12A5 protein overexpression in ovarian carcinomas was significantly associated with ascending histological grade, pT/pN/pM status, as well as FIGO stage (P<0.05). A subsequent univariate survival analysis of our ovarian carcinoma cohorts resulted in a significant association between SLC12A5 protein overexpression and decreased patient survival (44.3 and 85.9 months for high and low SLC12A5 protein expression, respectively; P<0.001). Importantly, additional multivariate analysis revealed that SLC12A5 protein expression was a significant, independent prognostic factor for overall survival in ovarian carcinoma patients (P=0.003). CONCLUSIONS: Collectively, these findings support the conclusion that SLC12A5 protein overexpression could indicate an invasive and/or aggressive phenotype of ovarian carcinoma. Future work will need to investigate whether SLC12A5 protein can serve as an independent prognostic molecular marker in patients with ovarian carcinoma.


Assuntos
Carcinoma Epitelial do Ovário/metabolismo , Neoplasias Ovarianas/metabolismo , Simportadores/biossíntese , Carcinoma Epitelial do Ovário/patologia , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Pessoa de Meia-Idade , Invasividade Neoplásica , Neoplasias Ovarianas/patologia , Taxa de Sobrevida , Análise Serial de Tecidos
18.
BMC Cancer ; 19(1): 851, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462277

RESUMO

BACKGROUND: Gradual loss of terminal differentiation markers and gain of stem cell-like properties is a major hall mark of cancer malignant progression. The stem cell pluripotent transcriptional factor SOX family play critical roles in governing tumor plasticity and lineage specification. This study aims to establish a novel SOX signature to monitor the extent of tumor dedifferentiation and predict prognostic significance in hepatocellular carcinoma (HCC). METHODS: The RNA-seq data from The Cancer Genome Atlas (TCGA) LIHC project were chronologically divided into the training (n = 188) and testing cohort (n = 189). LIRI-JP project from International Cancer Genome Consortium (ICGC) data portal was used as an independent validation cohort (n = 232). Kaplan-Meier and multivariable Cox analyses were used to examine the clinical significance and prognostic value of the signature genes. RESULTS: The SOX gene family members were found to be aberrantly expressed in clinical HCC patients. A five-gene SOX signature with prognostic value was established in the training cohort. The SOX signature genes were found to be closely associated with tumor grade and tumor stage. Liver cancer dedifferentiation markers (AFP, CD133, EPCAM, and KRT19) were found to be progressively increased while hepatocyte terminal differentiation markers (ALB, G6PC, CYP3A4, and HNF4A) were progressively decreased from HCC patients with low SOX signature scores to patients with high SOX signature scores. Kaplan-Meier survival analysis further indicated that the newly established SOX signature could robustly predict patient overall survival in both training, testing, and independent validation cohort. CONCLUSIONS: An oncogenic dedifferentiation SOX signature presents a great potential in predicting prognostic significance in HCC, and might provide novel biomarkers for precision oncology further in the clinic.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/patologia , Perfilação da Expressão Gênica/métodos , Neoplasias Hepáticas/patologia , Fatores de Transcrição SOX/genética , Carcinoma Hepatocelular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/genética , Masculino , Gradação de Tumores , Estadiamento de Neoplasias , Medicina de Precisão , Prognóstico , Análise de Sequência de RNA/métodos , Análise de Sobrevida
19.
Cell Death Dis ; 10(2): 99, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718500

RESUMO

Chromodomain helicase/ATPase DNA binding protein 1-like gene (CHD1L) is a recently identified gene associated with malignant tumor progression and patient chemotherapy resistance in human hepatocellular carcinoma (HCC). Previously, we found an association between CHD1L overexpression and poor patient survival in non-small-cell lung cancer (NSCLC). However, little is known about the relationship between CHD1L expression and chemotherapy resistance of NSCLC. By employing immunohistochemistry, we analyzed the expression of CHD1L in NSCLC samples and elucidated the roles and mechanism of CHD1L in NSCLC chemoresistance. We found that the increased expression of CHD1L is positively correlated with a shorter survival time of patients who had received chemotherapy after surgery. We also found that the expression of CHD1L was increased after cisplatin treatment in A549 cells. Conversely, the depletion of CHD1L in cisplatin-resistance cells increased the cell sensitivity to cisplatin, indicating that CHD1L plays a critical role in cisplatin resistance of NSCLC cells. Importantly, we identified the ATP-Binding Cassette Sub-Family B Member (ABCB1) gene as a potential downstream target of CHD1L in NSCLC cells. Knocking down ABCB1 coupled with ectopic expression of CHD1L enhanced the effect of cisplatin on NSCLC cells apoptosis. In addition, overexpressed CHD1L increase the transcription of c-Jun which targeted directly to the promoter of ABCB1. Our data demonstrate that CHD1L could induce cisplatin resistance in NSCLC via c-Jun-ABCB1-NF-κB axis, and may serve as a novel predictive marker and the potential therapeutic target for cisplatin resistance in NSCLC.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/uso terapêutico , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Transplante Heterólogo
20.
Mol Cell Biol ; 39(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30455250

RESUMO

Spermatogonial stem cells (SSCs) are unipotent germ cells that are at the foundation of spermatogenesis and male fertility. However, the underlying molecular mechanisms governing SSC stemness and growth properties remain elusive. We have recently identified chromodomain helicase/ATPase DNA binding protein 1-like (Chd1l) as a novel regulator for SSC survival and self-renewal, but how these functions are controlled by Chd1l remains to be resolved. Here, we applied high-throughput small RNA sequencing to uncover the microRNA (miRNA) expression profiles controlled by Chd1l and showed that the expression levels of 124 miRNA transcripts were differentially regulated by Chd1l in SSCs. KEGG pathway analysis shows that the miRNAs that are differentially expressed upon Chd1l repression are significantly enriched in the pathways associated with stem cell pluripotency and proliferation. As a proof of concept, we demonstrate that one of the most highly upregulated miRNAs, miR-486, controls SSC stemness gene expression and growth properties. The matrix metalloproteinase 2 (MMP2) gene has been identified as a novel miR-486 target gene in the context of SSC stemness gene regulation and growth properties. Data from cotransfection experiments showed that Chd1l, miR-486, and MMP2 work in concert in regulating SSC stemness gene expression and growth properties. Finally, our data also revealed that MMP2 regulates SSC stemness gene expression and growth properties through activating ß-catenin signaling by cleaving N-cadherin and increasing ß-catenin nuclear translocation. Our data demonstrate that Chd1l-miR-486-MMP2 is a novel regulatory axis governing SSC stemness gene expression and growth properties, offering a novel therapeutic opportunity for treating male infertility.


Assuntos
Células-Tronco Germinativas Adultas/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , MicroRNAs/metabolismo , Células-Tronco Germinativas Adultas/citologia , Animais , Proliferação de Células/fisiologia , Células Cultivadas , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Masculino , Metaloproteinase 2 da Matriz/genética , Camundongos , MicroRNAs/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Espermatogênese/fisiologia , Espermatogônias/metabolismo , Testículo/citologia , Testículo/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...