Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Reprod ; 37(11): 2646-2654, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36069495

RESUMO

STUDY QUESTION: Does the presence of FSHR single-nucleotide polymorphisms (SNPs) affect late follicular phase progesterone and estradiol serum levels in predicted normoresponders treated with rFSH? SUMMARY ANSWER: The presence of FSHR SNPs (rs6165, rs6166, rs1394205) had no clinically significant impact on late follicular phase serum progesterone and estradiol levels in predicted normoresponders undergoing a GnRH antagonist protocol with a fixed daily dose of 150 IU rFSH. WHAT IS KNOWN ALREADY: Previous studies have shown that late follicular phase serum progesterone and estradiol levels are significantly correlated with the magnitude of ovarian response. Several authors have proposed that individual variability in the response to ovarian stimulation (OS) could be explained by variants in FSHR. However, so far, the literature is scarce on the influence of this genetic variability on late follicular phase steroidogenic response. Our aim is to determine whether genetic variants in the FSHR gene could modulate late follicular phase serum progesterone and estradiol levels. STUDY DESIGN, SIZE, DURATION: In this multicenter multinational prospective study conducted from November 2016 to June 2019, 366 patients from Vietnam, Belgium and Spain (166 from Europe and 200 from Asia) underwent OS followed by oocyte retrieval in a GnRH antagonist protocol with a fixed daily dose of 150 IU rFSH. All patients were genotyped for 3 FSHR SNPs (rs6165, rs6166, rs1394205) and had a serum progesterone and estradiol measurement on the day of trigger. PARTICIPANTS/MATERIALS, SETTING, METHODS: Included patients were predicted normal responder women <38 years old undergoing their first or second OS cycle. The prevalence of late follicular phase progesterone elevation (PE), as well as mean serum progesterone and estradiol levels on the day of trigger were compared between the different FSHR SNPs genotypes. PE was defined as >1.50 ng/ml. MAIN RESULTS AND THE ROLE OF CHANCE: The overall prevalence of PE was 15.8% (n = 58). No significant difference was found in the prevalence of PE in Caucasian and Asian patients (17.5% versus 14.5%). Estradiol levels on the day of trigger and the number of retrieved oocytes were significantly higher in patients with PE (4779 ± 6236.2 versus 3261 ± 3974.5 pg/ml, P = 0.003, and 16.1 ± 8.02 versus 13.5 ± 6.66, P = 0.011, respectively). Genetic model analysis, adjusted for patient age, body mass index, number of retrieved oocytes and continent (Asia versus Europe), revealed a similar prevalence of PE in co-dominant, dominant and recessive models for variants FSHR rs6166, rs6165 and rs1394205. No statistically significant difference was observed in the mean late follicular phase progesterone serum levels according to the genotypes of FSHR rs6166 (P = 0.941), rs6165 (P = 0.637) and rs1394205 (P = 0.114) in the bivariate analysis. Also, no difference was found in the genetic model analysis regarding mean late follicular phase progesterone levels across the different genotypes. Genetic model analysis has also revealed no statistically significant difference regarding mean estradiol levels on the day of trigger in co-dominant, dominant and recessive models for variants FSHR rs6166, rs6165 and rs1394205. Haplotype analysis revealed a statistically significant lower estradiol level on the day of trigger for rs6166/rs6165 haplotypes GA, AA and GG when compared to AG (respectively, estimated mean difference (EMD) -441.46 pg/ml (95% CI -442.47; -440.45), EMD -673.46 pg/ml (95% CI -674.26; -672.67) and EMD -582.10 pg/ml (95% CI -584.92; -579.28)). No statistically significant differences were found regarding the prevalence of PE nor late follicular phase progesterone levels according to rs6166/rs6165 haplotypes. LIMITATIONS, REASONS FOR CAUTION: Results refer to a population of predicted normal responders treated with a normal/low fixed dose of 150 IU rFSH throughout the whole OS. Consequently, caution is needed before generalizing our results to all patient categories. WIDER IMPLICATIONS OF THE FINDINGS: Based on our results, FSHR SNPs rs6165, rs6166 and rs1394205 do not have any clinically significant impact neither on late follicular phase serum progesterone nor on estradiol levels in predicted normal responders. These findings add to the controversy in the literature regarding the impact of individual genetic susceptibility in response to OS in this population. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by an unrestricted grant by Merck Sharp & Dohme (MSD, IISP56222). N.P.P. reports grants and/or personal fees from MSD, Merck Serono, Roche Diagnostics, Ferring International, Besins Healthcare, Gedeon Richter, Organon, Theramex and Institut Biochimique SA (IBSA). C.A. reports conference fees from Merck Serono, Medea and Event Planet. A.R.N., C.B., C.S., P.Q.M.M., H.T., C.B., N.L.V., M.T.H. and S.G. report no conflict of interests related to the content of this article. TRIAL REGISTRATION NUMBER: NCT03007043.


Assuntos
Fase Folicular , Progesterona , Feminino , Humanos , Gravidez , Estradiol , Fertilização in vitro/métodos , Hormônio Liberador de Gonadotropina , Antagonistas de Hormônios , Indução da Ovulação/métodos , Taxa de Gravidez , Estudos Prospectivos
2.
Hum Reprod ; 36(6): 1711-1721, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33889959

RESUMO

STUDY QUESTION: Does the presence of single nucleotide polymorphisms (SNPs) in the FSH receptor gene (FSHR) and/or FSH beta subunit-encoding gene (FSHB) influence ovarian response in predicted normal responders treated with rFSH? SUMMARY ANSWER: The presence of FSHR SNPs (rs6165, rs6166, rs1394205) has a statistically significant impact in ovarian response, although this effect is of minimal clinical relevance in predicted normal responders treated with a fixed dose of 150 IU rFSH. WHAT IS KNOWN ALREADY: Ovarian reserve markers have been a breakthrough in response prediction following ovarian stimulation. However, a significant percentage of patients show a disproportionate lower ovarian response, as compared with their actual ovarian reserve. Studies on pharmacogenetics have demonstrated a relationship between FSHR or FSHB genotyping and drug response, suggesting a potential effect of individual genetic variability on ovarian stimulation. However, evidence from these studies is inconsistent, due to the inclusion of patients with variable ovarian reserve, use of different starting gonadotropin doses, and allowance for dose adjustments during treatment. This highlights the necessity of a well-controlled prospective study in a homogenous population treated with the same fixed protocol. STUDY DESIGN, SIZE, DURATION: We conducted a multicenter multinational prospective study, including 368 patients from Vietnam, Belgium, and Spain (168 from Europe and 200 from Asia), from November 2016 until June 2019. All patients underwent ovarian stimulation followed by oocyte retrieval in an antagonist protocol with a fixed daily dose of 150 IU rFSH until triggering. Blood sampling and DNA extraction was performed prior to oocyte retrieval, followed by genotyping of four SNPs from FSHR (rs6165, rs6166, rs1394205) and FSHB (rs10835638). PARTICIPANTS/MATERIALS, SETTING, METHODS: Eligible were predicted normal responder women <38 years old undergoing their first or second ovarian stimulation cycle. Laboratory staff and clinicians were blinded to the clinical results and genotyping, respectively. The prevalence of hypo-responders, the number of oocytes retrieved, the follicular output rate (FORT), and the follicle to oocyte index (FOI) were compared between different FSHR and FSHB SNPs genotypes. MAIN RESULTS AND THE ROLE OF CHANCE: The prevalence of derived allele homozygous SNPs in the FSHR was rs6166 (genotype G/G) 15.8%, rs6165 (genotype G/G) 34.8%, and rs1394205 (genotype A/A) 14.1%, with significant differences between Caucasian and Asian women (P < 0.001). FSHB variant rs10835638 (c.-211 G>T) was very rare (0.5%). Genetic model analysis revealed that the presence of the G allele in FSHR variant rs6166 resulted in less oocytes retrieved when compared to the AA genotype (13.54 ± 0.46 vs 14.81 ± 0.61, estimated mean difference (EMD) -1.47 (95% CI -2.82 to -0.11)). In FSHR variant rs1394205, a significantly lower number of oocytes was retrieved in patients with an A allele when compared to G/G (13.33 ± 0.41 vs 15.06 ± 0.68, EMD -1.69 (95% CI -3.06 to -0.31)). A significantly higher prevalence of hypo-responders was found in patients with the genotype A/G for FSHR variant rs6166 (55.9%, n = 57) when compared to A/A (28.4%, n = 29), ORadj 1.87 (95% CI 1.08-3.24). No significant differences were found regarding the FORT across the genotypes for FSHR variants rs6166, rs6165, or rs1394205. Regarding the FOI, the presence of the G allele for FSHR variant rs6166 resulted in a lower FOI when compared to the A/A genotype, EMD -13.47 (95% CI -22.69 to -4.24). Regarding FSHR variant rs6165, a lower FOI was reported for genotype A/G (79.75 ± 3.35) when compared to genotype A/A (92.08 ± 6.23), EMD -13.81 (95% CI -25.41 to -2.21). LIMITATIONS, REASONS FOR CAUTION: The study was performed in relatively young women with normal ovarian reserve to eliminate biases related to age-related fertility decline; thus, caution is needed when extrapolating results to older populations. In addition, no analysis was performed for FSHB variant rs10835638 due to the very low prevalence of the genotype T/T (n = 2). WIDER IMPLICATIONS OF THE FINDINGS: Based on our results, genotyping FSHR SNPs rs6165, rs6166, rs1394205, and FSHB SNP rs10835638 prior to initiating an ovarian stimulation with rFSH in predicted normal responders should not be recommended, taking into account the minimal clinical impact of such information in this population. Future research may focus on other populations and other genes related to folliculogenesis or steroidogenesis. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by an unrestricted grant by Merck Sharp & Dohme (MSD). N.P.P. reports grants and/or personal fees from MSD, Merck Serono, Roche Diagnostics, Ferring International, Besins Healthcare, Gedeon Richter, Theramex, and Institut Biochimique SA (IBSA). N.L.V. and M.T.H. report consultancy and conference fees from Merck, Ferring, and MSD, outside the submitted work. P.D. has received honoraria for lecturing and/or research grants from MSD, Ferring International, and Merck. D.S. reports grants and/or personal fees from MSD, Ferring International, Merck Serono, Cook, and Gedeon Richter. A.R.N., B.A.M., C.S., J.M., L.H.L., P.Q.M.M., H.T., and S.G. report no conflict of interests. TRIAL REGISTRATION NUMBER: NCT03007043.


Assuntos
Indução da Ovulação , Adulto , Ásia , Bélgica , Europa (Continente) , Feminino , Humanos , Estudos Prospectivos , Espanha , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...