Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Opt Express ; 32(7): 11774-11793, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571017

RESUMO

The imaging spectrometer's high performance in practical applications may be compromised by environmental factors, particularly temperature variations, posing a challenge to its stability. Temperature fluctuations can induce spectral shift, directly impacting the accuracy of spectral measurements, subsequently influencing the precision of radiometric measurements. To address this issue, this study investigates a dual-channel UV imaging spectrometer. This instrument boasts a wavelength calibration accuracy of 0.01 nm. This paper conducts an in-depth analysis of the various mechanisms through which temperature changes influence the spectral line offset in the imaging spectrometer, integrating actual orbital temperature data to discuss the instrument's temperature load settings. The impact of temperature on spectral shift is examined using finite element analysis and optical design software. Estimations of spectral shift were made based on temperature variations. Simulation results indicated that the maximum deviation of spectral shift is estimated at 0.018 nm under a temperature condition of 16 ± 1°C. Under a more controlled orbital temperature condition (16 ± 0.3°C), the maximum deviation of spectral shift decreased to 0.01 nm. Experimental data revealed that at 16 ± 1°C, the maximum deviation of spectral shift did not exceed 0.01 nm. This effectively corroborates our theoretical analysis. The relationship between temperature and spectral shift offers a crucial theoretical foundation for calibrating spectral measurements and managing the thermal conditions of the instrument.

2.
Nat Commun ; 14(1): 4795, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558668

RESUMO

Although enzyme catalysis is typified by high specificity, enzymes can catalyze various substrates (substrate promiscuity) and/or different reaction types (catalytic promiscuity) using a single active site. This interesting phenomenon is widely distributed in enzyme catalysis, with both fundamental and applied importance. To date, the mechanistic understanding of enzyme promiscuity is very limited. Herein, we report the structural mechanism underlying the substrate and catalytic promiscuity of Vibrio dual lipase/transferase (VDLT). Crystal structures of the VDLT from Vibrio alginolyticus (ValDLT) and its fatty acid complexes were solved, revealing prominent structural flexibility. In particular, the "Ser-His-Asp" catalytic triad machinery of ValDLT contains an intrinsically flexible oxyanion hole. Analysis of ligand-bound structures and mutagenesis showed that the flexible oxyanion hole and other binding residues can undergo distinct conformational changes to facilitate substrate and catalytic promiscuity. Our study reveals a previously unknown flexible form of the famous catalytic triad machinery and proposes a "catalytic site tuning" mechanism to expand the mechanistic paradigm of enzyme promiscuity.


Assuntos
Lipase , Vibrio , Domínio Catalítico , Lipase/genética , Lipase/química , Transferases , Catálise , Vibrio/genética , Especificidade por Substrato
3.
Front Bioeng Biotechnol ; 10: 966062, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051589

RESUMO

As an evolutionarily conserved posttranslational modification, protein lysine acetylation plays important roles in many physiological and metabolic processes. However, there are few reports about the applications of lysine acetylation in metabolic regulations. Lactate is a main byproduct in microbial fermentation, and itself also an important bulk chemical with considerable commercial values in many fields. Lactate dehydrogenase (LdhA) is the key enzyme catalyzing lactate synthesis from pyruvate. Here, we reported that Escherichia coli LdhA can be acetylated and the acetylated lysine sites were identified by mass spectrometry. The effects and regulatory mechanisms of acetylated sites on LdhA activity were characterized. Finally, lysine acetylation was successfully used to regulate the lactate synthesis. LdhA (K9R) mutant overexpressed strain improved the lactate titer and glucose conversion efficiency by 1.74 folds than that of wild-type LdhA overexpressed strain. LdhA (K154Q-K248Q) mutant can inhibit lactate accumulation and improve 3HP production. Our study established a paradigm for lysine acetylation in lactate synthesis regulation and suggested that lysine acetylation may be a promising strategy to improve the target production and conversion efficiency in microbial synthesis. The application of lysine acetylation in regulating lactate synthesis also provides a reference for the treatment of lactate-related diseases.

4.
Signal Transduct Target Ther ; 7(1): 318, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36100602

RESUMO

Excessive inflammatory responses contribute to the pathogenesis and lethality of highly pathogenic human coronaviruses, but the underlying mechanism remains unclear. In this study, the N proteins of highly pathogenic human coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), middle east respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), were found to bind MASP-2, a key serine protease in the lectin pathway of complement activation, resulting in excessive complement activation by potentiating MBL-dependent MASP-2 activation, and the deposition of MASP-2, C4b, activated C3 and C5b-9. Aggravated inflammatory lung injury was observed in mice infected with adenovirus expressing the N protein. Complement hyperactivation was also observed in SARS-CoV-2-infected patients. Either blocking the N protein:MASP-2 interaction, MASP-2 depletion or suppressing complement activation can significantly alleviate N protein-induced complement hyperactivation and lung injury in vitro and in vivo. Altogether, these data suggested that complement suppression may represent a novel therapeutic approach for pneumonia induced by these highly pathogenic coronaviruses.


Assuntos
COVID-19 , Lesão Pulmonar , Animais , COVID-19/genética , Lectina de Ligação a Manose da Via do Complemento/genética , Proteínas do Nucleocapsídeo de Coronavírus , Humanos , Inflamação/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Camundongos , SARS-CoV-2
5.
Int J Biol Macromol ; 184: 821-830, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34171258

RESUMO

dUTPases are key enzymes in all life kingdoms. A staphylococcal repressor protein (Stl) inhibited dUTPases from multiple species to various extents. Understanding the molecular basis underlying the inhibition differences is crucial to develop effective proteinaceous inhibitors of dUTPases. Herein, we report the complex structure of Stl N-terminal domain (StlN-ter) and Litopenaeus vannamei dUTPase domain (lvDUT65-210). Stl inhibited lvDUT65-210 through its N-terminal domain. The lvDUT65-210-StlN-ter complex structure revealed a heterohexamer encompassing three StlN-ter monomers bound to one lvDUT65-210 trimer, generating two types of Stl-dUTPase interfaces. Interface I is formed by Stl interaction with the lvDUT65-210 active-site region that is contributed by motifs I-IV from its two subunits; interface II results from Stl binding to the C-terminal motif V of the third lvDUT65-210 subunit. Structural comparison revealed both conserved features and obvious differences in Stl-dUTPase interaction patterns, giving clues about the inhibition differences of Stl on dUTPases. Noticeably, interface II is only observed in lvDUT65-210-StlN-ter. The Stl-interacting residues of lvDUT65-210 are conserved in other eukaryotic dUTPases, particularly human dUTPase. Altogether, our study presents the first structural model of Stl interaction with eukaryotic dUTPase, contributing to a more complete view of Stl inhibition and facilitating the development of proteinaceous inhibitor for eukaryotic dUTPases.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Penaeidae/enzimologia , Pirofosfatases/química , Pirofosfatases/metabolismo , Staphylococcus aureus/metabolismo , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Penaeidae/química , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Staphylococcus aureus/química
6.
J Biol Chem ; 296: 100280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33450227

RESUMO

Protein tyrosine phosphorylation regulates the production of capsular polysaccharide, an essential virulence factor of the deadly pathogen Vibrio vulnificus. The process requires the protein tyrosine kinase Wzc and its cognate phosphatase Wzb, both of which are largely uncharacterized. Herein, we report the structures of Wzb of V. vulnificus (VvWzb) in free and ligand-bound forms. VvWzb belongs to the low-molecular-weight protein tyrosine phosphatase (LMWPTP) family. Interestingly, it contains an extra four-residue insertion in the W-loop, distinct from all known LMWPTPs. The W-loop of VvWzb protrudes from the protein body in the free structure, but undergoes significant conformational changes to fold toward the active site upon ligand binding. Deleting the four-residue insertion from the W-loop severely impaired the enzymatic activity of VvWzb, indicating its importance for optimal catalysis. However, mutating individual residues or even substituting the whole insertion with four alanine residues only modestly decreased the enzymatic activity, suggesting that the contribution of the insertion to catalysis is not determined by the sequence specificity. Furthermore, inserting the four residues into Escherichia coli Wzb at the corresponding position enhanced its activity as well, indicating that the four-residue insertion in the W-loop can act as a general activity enhancing element for other LMWPTPs. The novel W-loop type and phylogenetic analysis suggested that VvWzb and its homologs should be classified into a new group of LMWPTPs. Our study sheds new insight into the catalytic mechanism and structural diversity of the LMWPTP family and promotes the understanding of the protein tyrosine phosphorylation system in prokaryotes.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Fosfoproteínas Fosfatases/genética , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Quinases/genética , Vibrio vulnificus/genética , Sequência de Aminoácidos/genética , Proteínas de Bactérias/química , Domínio Catalítico/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Humanos , Ligantes , Proteínas de Membrana/química , Modelos Moleculares , Polímeros Molecularmente Impressos/química , Fosfoproteínas Fosfatases/química , Filogenia , Proteínas Tirosina Fosfatases/classificação , Proteínas Tirosina Quinases/química , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Vibrio vulnificus/química , Vibrio vulnificus/enzimologia
8.
Curr Neurovasc Res ; 17(3): 232-240, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32400333

RESUMO

BACKGROUND: Cardiopulmonary bypass (CPB) caused postoperative cognitive dysfunction (POCD) was characterized by hippocampus apoptosis, which seriously limited the therapeutic efficacy and utilization of CPB in clinic. Recent data indicated that sevoflurane anesthesia might alleviate CPB-induced POCD, however, the underlying mechanisms are still unclear. METHODS: In the present study, the in vivo CPB-POCD models were established by using aged Sprague-Dawley (SD) male rats and the in vitro hypoxia/reoxygenation (H/R) models were inducted by using the primary hippocampus neuron (PHN) cells. RESULTS: The results showed that CPB impaired cognitive functions and induced hippocampus apoptosis in rat models, which were alleviated by pre-treating rats with low-dose sevoflurane. In addition, the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signal pathway was inactivated in the hippocampus tissues of CPB-POCD rats, which were rescued by low-dose sevoflurane treatment. Of note, the PI3K/AKT inhibitor (LY294002) abrogated the protective effects of low-dose sevoflurane on CPB-POCD rats. Consistently, the in vitro results showed that H/R treatment induced cell apoptosis and inhibited cell viability in PHN cells, which were attenuated by low-dose sevoflurane. Similarly, LY294002 abrogated the inhibiting effects of low-dose sevoflurane on H/R-induced PHN cell death. CONCLUSION: Taken together, low-dose sevoflurane attenuated CPB-induced POCD by inhibiting hippocampus apoptosis through activating PI3K/AKT signal pathway.


Assuntos
Ponte Cardiopulmonar/efeitos adversos , Hipocampo/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Complicações Cognitivas Pós-Operatórias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sevoflurano/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Masculino , Inibidores da Agregação Plaquetária/administração & dosagem , Complicações Cognitivas Pós-Operatórias/prevenção & controle , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
9.
Biochimie ; 171-172: 213-222, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32179166

RESUMO

ß-Lactams are the most widely used antibiotics in treating bacterial infections. However, they are rarely applied in infections caused by Vibrio parahaemolyticus, as the bacterium is intrinsically resistant to penicillins by expressing ß-lactamase. Here we report structural characterization of the CARB ß-lactamase from V. parahaemolyticus (CARB-20). CARB-20 is a class A ß-lactamase, belonging to subclass A1 (containing 70STFKAL75, 130SDNTAANL137, 164RXEXXLN170, 231VGDKTG236, etc.), group LSBL2 (with the disulfide bridge C77-C123, motif 231IADRSGAG238 and R244). CARB-20 adopts a typical subclass A1 ß-lactamase fold consisting of two domains. Its active site is constituted by four conserved motifs, similar to that of known subclass A1 ß-lactamases. Analysis of the active site structure reveals its substrate preference for penicillin, ampicillin and carbenicillin but not for latterly developed cephalosporins. Meanwhile, ß-lactamase inhibitors such as clavulanate and sulbactam can well fit into the active site, supporting ß-lactams combined with ß-lactamase inhibitors as a potential approach for treating infection of V. parahaemolyticus. The residues around the active site show certain variations, which can be useful for specific inhibitor design. In the directed evolution experiment, CARB-20 exhibited plasticity in developing significant resistance to inhibitors by accumulated residue substitutions. Therefore, careful monitoring of enzyme mutations is necessary for successfully applying ß-lactam/ß-lactamase inhibitor combination therapy. Taken together, our results open up an avenue of inhibitor design targeting vibrio ß-lactamases, facilitating the application of ß-lactams in treating vibrio infections.


Assuntos
Proteínas de Bactérias/química , Vibrio parahaemolyticus/enzimologia , Inibidores de beta-Lactamases/metabolismo , beta-Lactamases/química , beta-Lactamas/metabolismo , Domínio Catalítico , Especificidade por Substrato , Resistência beta-Lactâmica
10.
J Med Chem ; 63(9): 4562-4578, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32045235

RESUMO

The main protease of coronaviruses and the 3C protease of enteroviruses share a similar active-site architecture and a unique requirement for glutamine in the P1 position of the substrate. Because of their unique specificity and essential role in viral polyprotein processing, these proteases are suitable targets for the development of antiviral drugs. In order to obtain near-equipotent, broad-spectrum antivirals against alphacoronaviruses, betacoronaviruses, and enteroviruses, we pursued a structure-based design of peptidomimetic α-ketoamides as inhibitors of main and 3C proteases. Six crystal structures of protease-inhibitor complexes were determined as part of this study. Compounds synthesized were tested against the recombinant proteases as well as in viral replicons and virus-infected cell cultures; most of them were not cell-toxic. Optimization of the P2 substituent of the α-ketoamides proved crucial for achieving near-equipotency against the three virus genera. The best near-equipotent inhibitors, 11u (P2 = cyclopentylmethyl) and 11r (P2 = cyclohexylmethyl), display low-micromolar EC50 values against enteroviruses, alphacoronaviruses, and betacoronaviruses in cell cultures. In Huh7 cells, 11r exhibits three-digit picomolar activity against the Middle East Respiratory Syndrome coronavirus.


Assuntos
Antivirais/farmacologia , Coronavirus/efeitos dos fármacos , Enterovirus/efeitos dos fármacos , Lactamas/farmacologia , Peptidomiméticos/farmacologia , Replicação Viral/efeitos dos fármacos , Proteases Virais 3C , Animais , Antivirais/síntese química , Antivirais/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Chlorocebus aethiops , Coronavirus/enzimologia , Proteases 3C de Coronavírus , Cristalografia por Raios X , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Desenho de Fármacos , Enterovirus/enzimologia , Humanos , Lactamas/síntese química , Lactamas/metabolismo , Peptidomiméticos/síntese química , Peptidomiméticos/metabolismo , Inibidores de Proteases/síntese química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Ligação Proteica , Células Vero , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química , Proteínas Virais/metabolismo
11.
J Biol Chem ; 294(30): 11391-11401, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31073025

RESUMO

Phospholipases can disrupt host membranes and are important virulence factors in many pathogens. VvPlpA is a phospholipase A2 secreted by Vibrio vulnificus and essential for virulence. Its homologs, termed thermolabile hemolysins (TLHs), are widely distributed in Vibrio bacteria, but no structural information for this virulence factor class is available. Herein, we report the crystal structure of VvPlpA to 1.4-Å resolution, revealing that VvPlpA contains an N-terminal domain of unknown function and a C-terminal phospholipase domain and that these two domains are packed closely together. The phospholipase domain adopts a typical SGNH hydrolase fold, containing the four conserved catalytic residues Ser, Gly, Asn, and His. Interestingly, the structure also disclosed that the phospholipase domain accommodates a chloride ion near the catalytic His residue. The chloride is five-coordinated in a distorted bipyramid geometry, accepting hydrogen bonds from a water molecule and the amino groups of surrounding residues. This chloride substitutes for the most common Asp/Glu residue and forms an unusual Ser-His-chloride catalytic triad in VvPlpA. The chloride may orient the catalytic His and stabilize the charge on its imidazole ring during catalysis. Indeed, VvPlpA activity depended on chloride concentration, confirming the important role of chloride in catalysis. The VvPlpA structure also revealed a large hydrophobic substrate-binding pocket that is capable of accommodating a long-chain acyl group. Our results provide the first structure of the TLH family and uncover an unusual Ser-His-chloride catalytic triad, expanding our knowledge on the biological role of chloride.


Assuntos
Domínio Catalítico , Cloretos/química , Histidina/química , Fosfolipases A2/química , Serina/química , Vibrio vulnificus/enzimologia , Sequência de Aminoácidos , Conformação Proteica , Alinhamento de Sequência
12.
Biochem Biophys Res Commun ; 505(2): 471-477, 2018 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-30268503

RESUMO

Extracellular proteases are often produced as pre-pro-enzyme and then undergo multiple processing steps to mature into the active form. The protease Epp, a virulent factor of Vibrio anguillarum, belongs to this family. Its maturation might be regulated by Ca2+ via its polycystic kidney disease (PKD) domain, but the molecular mechanism is unknown. Herein, we report the crystal structure of the first PKD domain from V. anguillarum Epp (Epp-PKD1) and its specific Ca2+-binding capacity. Epp-PKD1 exists as a monomer, consisting of seven ß-strands which form two ß-sheets stacking with each other. One Ca2+ is bound by the residues Asn3, Gln4, Asp27, Asp29, Asp68 and a water molecule with a pentagonal bipyramidal geometry. Incubating the apo Epp-PKD1 with Ca2+ but not Mg2+, Mn2+, or Zn2+, enhances the thermal and chemical stability of Epp-PKD1, indicating its specific binding to Ca2+. Epp-PKD1 shares high similarity in both sequence and overall structure with that of Vibrio cholerae PrtV, a homologous protease of Epp, however, they differ in the oligomeric state and local structure at the Ca2+-binding site, suggesting maturation of PrtV and Epp might be differently regulated by Ca2+. Likely, proteases may take advantage of the structural diversity in PKD domains to tune their Ca2+-regulated maturation process.


Assuntos
Proteínas de Bactérias/química , Peptídeo Hidrolases/química , Vibrio/enzimologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Vibrio/patogenicidade , Fatores de Virulência/química , Fatores de Virulência/metabolismo
14.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 5): 283-287, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717995

RESUMO

Siderophore-interacting proteins (SIPs) play an important role in iron acquisition in many bacteria. SIPs release iron from the internalized ferric siderophore complex by reducing ferric iron to ferrous iron, but how the iron is reduced is not well understood. Here, a sip gene was identified in the genome of Vibrio anguillarum 775. To further understand the catalytic mechanism of the protein, the SIP was overexpressed in Escherichia coli Rosetta (DE3) cells, purified and crystallized for X-ray diffraction analysis. The crystal diffracted to 1.113 Šresolution and belonged to space group P21, with unit-cell parameters a = 64.63, b = 58.47, c = 70.65 Å, ß = 114.19°.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sideróforos/química , Sideróforos/genética , Vibrio/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Cristalização/métodos , Cristalografia por Raios X/métodos , Sideróforos/metabolismo , Difração de Raios X/métodos
15.
Saudi J Biol Sci ; 25(1): 47-51, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29379356

RESUMO

In the current study, we scrutinized the effect of sevoflurane and halothane on cognitive and immune function in young rats. The rats were divided into following groups: sevoflurane, halothane and sevoflurane + halothane groups, respectively. The rats were regularly treated with the pre-determined treatment. We also scrutinized the serum proinflammatory cytokines including IL-10, IL-4 and IL-2; brain level IL-1ß; hippocampal neuronal apoptosis concentration were estimated. The water maze test was performed in rats for the estimation of cognitive ability. During the water maze test, on the 1st day the sevoflurane group showed the latency; sevoflurane and sevoflurane + halothane group demonstrated the declined latency gradually as compared to the control group rats after the 3 days. The latency of the control, halothane, sevoflurane + halothane group rats showed the reduced latency and also showed the reduced crossing circle times. The hippocampal neuron apoptosis was significantly increased in halothane and sevoflurane + halothane group as compared to control group rats, respectively. Control group rats demonstrated the increased neuron apoptosis. The proinflammatory cytokines including IL-10 and IL-4 was significantly higher in sevoflurane, halothane and sevoflurane + halothane group rats after anesthesia and the whole brain IL-1ß was significantly decrease in the sevoflurane, halothane and sevoflurane + halothane as compared to control group. Sevoflurane can inhibit the anesthesia effect of halothane on the immune and cognitive function of rats.

16.
Int J Biol Macromol ; 111: 1175-1182, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29371148

RESUMO

Rapid accumulations of unattached green macroalgae, referred to as blooms, constitute ecological disasters and occur in many coastal regions. Ulva are a major cause of blooms, owing to their high nitrogen utilization capacity, which requires nitrate reductase (NR) activity; however, molecular characterization of Ulva NR remains lacking. Herein we determined the crystal structure and performed an enzymatic analysis of the cytochrome b5 reductase domain of Ulva prolifera NR (UpCbRNR). The structural analysis revealed an N-terminal FAD-binding domain primarily consisting of six antiparallel ß strands, a C-terminal NADH-binding domain forming a Rossmann fold, and a three ß-stranded linker region connecting these two domains. The FAD cofactor was located in the cleft between the two domains and interacted primarily with the FAD-binding domain. UpCbRNR shares similarities in overall structure and cofactor interactions with homologs, and its catalytic ability is comparable to that of higher plant CbRNRs. Structure and sequence comparisons of homologs revealed two regions of sequence length variation potentially useful for phylogenetic analysis: one in the FAD-binding domain, specific to U. prolifera, and another in the linker region that may be used to differentiate between plant, fungi, and animal homologs. Our data will facilitate molecular-level understanding of nitrate assimilation in Ulva.


Assuntos
Citocromo-B(5) Redutase/química , Citocromos b5/química , Conformação Proteica em Folha beta , Ulva/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Flavina-Adenina Dinucleotídeo/química , Nitrogênio/metabolismo , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína
17.
J Biol Chem ; 293(3): 1088-1099, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29187596

RESUMO

dUTPases are essential enzymes for maintaining genome integrity and have recently been shown to play moonlighting roles when containing extra sequences. Interestingly, the trimeric dUTPase of white spot syndrome virus (wDUT) harbors a sequence insert at the position preceding the C-terminal catalytic motif V (pre-V insert), rarely seen in other dUTPases. However, whether this extra sequence endows wDUT with additional properties is unknown. Herein, we present the crystal structures of wDUT in both ligand-free and ligand-bound forms. We observed that the pre-V insert in wDUT forms an unusual ß-hairpin structure in the domain-swapping region and thereby facilitates a unique orientation of the adjacent C-terminal segment, positioning the catalytic motif V onto the active site of its own subunit instead of a third subunit. Consequently, wDUT employs two-subunit active sites, unlike the widely accepted paradigm that the active site of trimeric dUTPase is contributed by all three subunits. According to results from local structural comparisons, the active-site configuration of wDUT is similar to that of known dUTPases. However, we also found that residues in the second-shell region of the active site are reconfigured in wDUT as an adaption to its unique C-terminal orientation. We also show that deletion of the pre-V insert significantly reduces wDUT's enzymatic activity and thermal stability. We hypothesize that this rare structural arrangement confers additional functionality to wDUT. In conclusion, our study expands the structural diversity in the conserved dUTPase family and illustrates how sequence insertion and amino acid substitution drive protein evolution cooperatively.


Assuntos
Pirofosfatases/química , Pirofosfatases/metabolismo , Vírus da Síndrome da Mancha Branca 1/enzimologia , Substituição de Aminoácidos , Domínio Catalítico , Vírus de DNA/enzimologia , Dobramento de Proteína
18.
Artigo em Inglês | MEDLINE | ID: mdl-28791260

RESUMO

The hemorrhagic septicemic disease vibriosis caused by Vibrio anguillarum shows noticeable similarities to invasive septicemia in humans, and in this case, the V. anguillarum-host system has the potential to serve as a model for understanding native eukaryotic host-pathogen interactions. Iron acquisition, as a fierce battle occurring between pathogenic V. anguillarum and the fish host, is a pivotal step for virulence. In this article, advances in defining the roles of iron uptake pathways in growth and virulence of V. anguillarum have been summarized, divided into five aspects, including siderophore biosynthesis and secretion, iron uptake, iron release, and regulation of iron uptake. Understanding the molecular mechanisms of iron acquisition will have important implications for the pathogenicity of this organism.


Assuntos
Ferro/metabolismo , Oligoelementos/metabolismo , Vibrio/crescimento & desenvolvimento , Vibrio/metabolismo , Animais , Doenças dos Peixes/microbiologia , Redes e Vias Metabólicas , Sideróforos/metabolismo , Vibrio/patogenicidade , Vibrioses/microbiologia , Vibrioses/veterinária , Virulência
19.
Biochem Biophys Res Commun ; 490(3): 827-833, 2017 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-28647364

RESUMO

Antibiotic resistance is becoming a global threat and overuse of antibiotics in aquaculture disease control worsens the situation. To reduce the risk of drug resistance developed in aquaculture, safer biocontrol programs are needed. Antivirulence therapy, with less chance for developing drug resistance, is a promising approach. To facilitate antivirulence inhibitor design against Vibrio anguillarum, a serious aquaculture pathogen, we present crystal structures for isochorismatase domains of AngB and VabB, which are required to synthesize siderophore, a critical virulence factor. Both structures are highly similar to known isochorismatases in fold and active site, therefore we conclude inhibitors for isochorismatases can be developed in a common framework. The structural information will improve design of virulence inhibitors against Vibrio anguillarum. We also firstly report that isochorismatase family could bind endogenous metabolite during the hetero-expression process, which is likely nicotinic acid, nicotinamide or pyrazinic acid, based on structural analysis and affinity prediction. Taken together, our results provide precise structural information of isochorismatase domains for antivirulence inhibitor design against Vibrio anguillarum.


Assuntos
Hidrolases/química , Vibrio/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Hidrolases/antagonistas & inibidores , Hidrolases/metabolismo , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Alinhamento de Sequência , Vibrio/química , Vibrio/metabolismo , Vibrioses/microbiologia
20.
J Virol ; 91(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28148787

RESUMO

Severe acute respiratory syndrome (SARS) is a respiratory disease, caused by a coronavirus (SARS-CoV), that is characterized by atypical pneumonia. The nucleocapsid protein (N protein) of SARS-CoV plays an important role in inhibition of type I interferon (IFN) production via an unknown mechanism. In this study, the SARS-CoV N protein was found to bind to the SPRY domain of the tripartite motif protein 25 (TRIM25) E3 ubiquitin ligase, thereby interfering with the association between TRIM25 and retinoic acid-inducible gene I (RIG-I) and inhibiting TRIM25-mediated RIG-I ubiquitination and activation. Type I IFN production induced by poly I·C or Sendai virus (SeV) was suppressed by the SARS-CoV N protein. SARS-CoV replication was increased by overexpression of the full-length N protein but not N amino acids 1 to 361, which could not interact with TRIM25. These findings provide an insightful interpretation of the SARS-CoV-mediated host innate immune suppression caused by the N protein.IMPORTANCE The SARS-CoV N protein is essential for the viral life cycle and plays a key role in the virus-host interaction. We demonstrated that the interaction between the C terminus of the N protein and the SPRY domain of TRIM25 inhibited TRIM25-mediated RIG-I ubiquitination, which resulted in the inhibition of IFN production. We also found that the Middle East respiratory syndrome CoV (MERS-CoV) N protein interacted with TRIM25 and inhibited RIG-I signaling. The outcomes of these findings indicate the function of the coronavirus N protein in modulating the host's initial innate immune response.


Assuntos
Evasão da Resposta Imune , Tolerância Imunológica , Interferon Tipo I/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Proteínas do Nucleocapsídeo de Coronavírus , Humanos , Ligação Proteica , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Ubiquitinação , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...