Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 624(7991): 282-288, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092911

RESUMO

Miniaturized lasers play a central role in the infrastructure of modern information society. The breakthrough in laser miniaturization beyond the wavelength scale has opened up new opportunities for a wide range of applications1-4, as well as for investigating light-matter interactions in extreme-optical-field localization and lasing-mode engineering5-19. An ultimate objective of microscale laser research is to develop reconfigurable coherent nanolaser arrays that can simultaneously enhance information capacity and functionality. However, the absence of a suitable physical mechanism for reconfiguring nanolaser cavities hinders the demonstration of nanolasers in either a single cavity or a fixed array. Here we propose and demonstrate moiré nanolaser arrays based on optical flatbands in twisted photonic graphene lattices, in which coherent nanolasing is realized from a single nanocavity to reconfigurable arrays of nanocavities. We observe synchronized nanolaser arrays exhibiting high spatial and spectral coherence, across a range of distinct patterns, including P, K and U shapes and the Chinese characters '' and '' ('China' in Chinese). Moreover, we obtain nanolaser arrays that emit with spatially varying relative phases, allowing us to manipulate emission directions. Our work lays the foundation for the development of reconfigurable active devices that have potential applications in communication, LiDAR (light detection and ranging), optical computing and imaging.

2.
Nat Commun ; 13(1): 6485, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36309528

RESUMO

Bound states in the continuum (BICs) in photonic crystals describe the originally leaky Bloch modes that can become bounded when their radiation fields carry topological polarization singularities. However, topological polarization singularities do not carry energy to far field, which limits radiation efficiencies of BICs for light emitting applications. Here, we demonstrate a topological polarization singular laser which has a topological polarization singular channel in the second Brillouin zone and a paired linearly polarized radiation channel in the first Brillouin zone. The presence of the singular channel enables the lasing mode with a higher quality factor than other modes for single mode lasing. In the meanwhile, the presence of the radiation channel secures the lasing mode with high radiation efficiency. The demonstrated topological polarization singular laser operates at room temperature with an external quantum efficiency exceeding 24%. Our work presents a new paradigm in eigenmode engineering for mode selection, exotic field manipulation and lasing.

3.
Light Sci Appl ; 11(1): 249, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941137

RESUMO

Hyperbolic polariton vortices carrying reconfigurable topological charges have been realized at deep subwavelength scale.

4.
Phys Rev Lett ; 127(20): 209402, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860064
5.
Nat Nanotechnol ; 16(10): 1099-1105, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34400821

RESUMO

Conventional laser cavities require discontinuity of material property or disorder to localize a light field for feedback. Recently, an emerging class of materials, twisted van der Waals materials, have been explored for applications in electronics and photonics. Here we propose and develop magic-angle lasers, where the localization is realized in periodic twisted photonic graphene superlattices. We reveal that the confinement mechanism of magic-angle lasers does not rely on a full bandgap but on the mode coupling between two twisted layers of photonic graphene lattice. Without any fine-tuning in structure parameters, a simple twist can result in nanocavities with strong field confinement and a high quality factor. Furthermore, the emissions of magic-angle lasers allow direct imaging of the wavefunctions of magic-angle states. Our work provides a robust platform to construct high-quality nanocavities for nanolasers, nano light-emitting diodes, nonlinear optics and cavity quantum electrodynamics at the nanoscale.

6.
Nano Lett ; 20(10): 7144-7151, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32941049

RESUMO

Flexible optoelectronic devices attract considerable attention due to their prominent role in creating novel wearable apparatus for bionics, robotics, health care, and so forth. Although bulk single-crystalline perovskite-based materials are well-recognized for the high photoelectric conversion efficiency than the polycrystalline ones, their stiff and brittle nature unfortunately prohibits their application for flexible devices. Here, we introduce ultrathin single-crystalline perovskite film as the active layer and demonstrate a high-performance flexible photodetector with prevailing bending reliability. With a much-reduced thickness of 20 nm, the photodetector made of this ultrathin film can achieve a significantly increased responsivity as 5600A/W, 2 orders of magnitude higher than that of recently reported flexible perovskite photodetectors. The demonstrated 0.2 MHz 3 dB bandwidth further paves the way for high-speed photodetection. Notably, all its optoelectronic characteristics resume after being bent over thousands of times. These results manifest the great potential of single-crystalline perovskite ultrathin films for developing wearable and flexible optoelectronic devices.

7.
Phys Rev Lett ; 125(1): 013903, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678624

RESUMO

Spin-momentum locking is a direct consequence of bulk topological order and provides a basic concept to control a carrier's spin and charge flow for new exotic phenomena in condensed matter physics. However, up to date the research on spin-momentum locking solely focuses on its in-plane transport properties. Here, we report an emerging out-of-plane radiation feature of spin-momentum locking in a non-Hermitian topological photonic system and demonstrate a high performance topological vortex laser based on it. We find that the gain saturation effect lifts the degeneracy of the paired counterpropagating spin-momentum-locked edge modes enabling lasing from a single topological edge mode. The near-field spin and orbital angular momentum of the topological edge mode lasing has a one-to-one far-field radiation correspondence. The methodology of probing the near-field topology feature by far-field lasing emission can be used to study other exotic phenomena. The device can lead to applications in superresolution imaging, optical tweezers, free-space optical sensing, and communication.

8.
Nano Converg ; 7(1): 25, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32691332

RESUMO

Modern electronic and photonic devices rely on single-crystalline thin film semiconductors for high performance and reproducibility. The emerging halide perovskites have extraordinary electronic and photonic properties and can be synthesized via low cost solution-based methods. They have been used in a variety of devices with performance approaching or over the devices based on conventional materials. However, their solution based growth method is intrinsically challenge to grow large scale single-crystalline thin film due to the random nucleation and isotropous growth of the crystal. Here, we report the growth of centimeter-scale perovskite single-crystalline thin films by controlling the nucleation density and growth rate of the crystal under a spatially confined growth condition. The hydrophobic treatment on substrates inhibits nucleation and accelerates the growth of single-crystalline thin film, providing enough space for initial nucleus growing up quickly without touching each other. Single-crystalline perovskite thin-film with an aspect ratio of 1000 (1 cm in side length, 10 µm in thickness) has been successfully grown. The low trap density and the high mobility of the as-grown thin film show a high crystallinity. The photodetector based on the perovskite thin film has achieved a gain ~ 104, benefitting from the short transit time of the carries due to the high mobility and thin thickness of the active layer. Our work opens up a new route to grow large scale perovskite single-crystalline thin films, providing a platform to develop high- performance devices.

9.
Light Sci Appl ; 9: 90, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509297

RESUMO

Ten years ago, three teams experimentally demonstrated the first spasers, or plasmonic nanolasers, after the spaser concept was first proposed theoretically in 2003. An overview of the significant progress achieved over the last 10 years is presented here, together with the original context of and motivations for this research. After a general introduction, we first summarize the fundamental properties of spasers and discuss the major motivations that led to the first demonstrations of spasers and nanolasers. This is followed by an overview of crucial technological progress, including lasing threshold reduction, dynamic modulation, room-temperature operation, electrical injection, the control and improvement of spasers, the array operation of spasers, and selected applications of single-particle spasers. Research prospects are presented in relation to several directions of development, including further miniaturization, the relationship with Bose-Einstein condensation, novel spaser-based interconnects, and other features of spasers and plasmonic lasers that have yet to be realized or challenges that are still to be overcome.

10.
Nature ; 581(7809): 401-405, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461649

RESUMO

Plasmonics enables the manipulation of light beyond the optical diffraction limit1-4 and may therefore confer advantages in applications such as photonic devices5-7, optical cloaking8,9, biochemical sensing10,11 and super-resolution imaging12,13. However, the essential field-confinement capability of plasmonic devices is always accompanied by a parasitic Ohmic loss, which severely reduces their performance. Therefore, plasmonic materials (those with collective oscillations of electrons) with a lower loss than noble metals have long been sought14-16. Here we present stable sodium-based plasmonic devices with state-of-the-art performance at near-infrared wavelengths. We fabricated high-quality sodium films with electron relaxation times as long as 0.42 picoseconds using a thermo-assisted spin-coating process. A direct-waveguide experiment shows that the propagation length of surface plasmon polaritons supported at the sodium-quartz interface can reach 200 micrometres at near-infrared wavelengths. We further demonstrate a room-temperature sodium-based plasmonic nanolaser with a lasing threshold of 140 kilowatts per square centimetre, lower than values previously reported for plasmonic nanolasers at near-infrared wavelengths. These sodium-based plasmonic devices show stable performance under ambient conditions over a period of several months after packaging with epoxy. These results indicate that the performance of plasmonic devices can be greatly improved beyond that of devices using noble metals, with implications for applications in plasmonics, nanophotonics and metamaterials.

11.
Nano Lett ; 20(6): 4645-4652, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32364394

RESUMO

A single photon in a strongly nonlinear cavity is able to block the transmission of a second photon, thereby converting incident coherent light into antibunched light, which is known as the photon blockade effect. Photon antipairing, where only the entry of two photons is blocked and the emission of bunches of three or more photons is allowed, is based on an unconventional photon blockade mechanism due to destructive interference of two distinct excitation pathways. We propose quantum plexcitonic systems with moderate nonlinearity to generate both antibunched and antipaired photons. The proposed plexcitonic systems benefit from subwavelength field localizations that make quantum emitters spatially distinguishable, thus enabling a reconfigurable photon source between antibunched and antipaired states via tailoring the energy bands. For a realistic nanoprism plexcitonic system, chemical and optical schemes of reconfiguration are demonstrated. These results pave the way to realize reconfigurable nonclassical photon sources in a simple quantum plexcitonic platform.

12.
Nat Nanotechnol ; 15(1): 67-72, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31844287

RESUMO

Topological insulators are materials that behave as insulators in the bulk and as conductors at the edge or surface due to the particular configuration of their bulk band dispersion. However, up to date possible practical applications of this band topology on materials' bulk properties have remained abstract. Here, we propose and experimentally demonstrate a topological bulk laser. We pattern semiconductor nanodisk arrays to form a photonic crystal cavity showing topological band inversion between its interior and cladding area. In-plane light waves are reflected at topological edges forming an effective cavity feedback for lasing. This band-inversion-induced reflection mechanism induces single-mode lasing with directional vertical emission. Our topological bulk laser works at room temperature and reaches the practical requirements in terms of cavity size, threshold, linewidth, side-mode suppression ratio and directionality for most practical applications according to Institute of Electrical and Electronics Engineers and other industry standards. We believe this bulk topological effect will have applications in near-field spectroscopy, solid-state lighting, free-space optical sensing and communication.

13.
Nat Mater ; 18(11): 1152-1153, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31645705
14.
Small ; 15(8): e1900423, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30794345
15.
Small ; 15(7): e1804102, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30645007

RESUMO

Despite many advances in the development of artificial systems with helical twist motions or deformations, obtaining materials that can undergo continuous twist movements upon an energy input remains a great challenge. In this work, a continuous twist movement of microribbons driven by scanning laser irradiation, a process that a twist generates initially at one end of the microribbon and is continuously transmitted to the other end and then kept twisting, is reported. Key factors to the achievement of this movement are the fabrication of elastic microribbons that possess relatively low elastic modulus and diagonal photoinduced π-stacking distortion relative to the microribbon long axis. Furthermore, the scanning laser irradiation is required to drive the π-stacking distortion with the spatiotemporal coordination for the continuous twist movement of microribbons. These findings may be extended to the achievement of other sophisticated continuous movements of microscale systems.

16.
Nat Nanotechnol ; 14(1): 12-22, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30559486

RESUMO

Nanolasers generate coherent light at the nanoscale. In the past decade, they have attracted intense interest, because they are more compact, faster and more power-efficient than conventional lasers. Thanks to these capabilities, nanolasers are now an emergent tool for a variety of practical applications. In this Review, we explain the intrinsic merits of nanolasers and assess recent progress on their applications, particularly for optical interconnects, near-field spectroscopy and sensing, optical probing for biological systems and far-field beam synthesis through near-field eigenmode engineering. We highlight the scientific and engineering challenges that remain for forging nanolasers into powerful tools for nanoscience and nanotechnology.

17.
Nano Lett ; 18(12): 7942-7948, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30422664

RESUMO

Plasmonic nanolasers break the diffraction limit for an optical oscillator, which brings new capabilities for various applications ranging from on-chip optical interconnector to biomedical sensing and imaging. However, the inevitably accompanied metallic absorption loss could convert the input power to heat rather than radiations, leading to undesired low external quantum efficiency and device degradation. To date, direct characterization of quantum efficiency of plasmonic nanolasers is still a forbidden task due to its near-field surface plasmon emissions, divergent emission profile, and the limited emission power. Here, we develop a method to characterize the external quantum efficiency of plasmonic nanolasers by synergizing experimental measurement and theoretical calculation. With systematical device optimization, we demonstrate high performance plasmonic nanolasers with external quantum efficiency exceeding 10% at room temperature. This work fills in a missing yet essential piece of key metrics of plasmonic nanolasers. The demonstrated high external quantum efficiency of plasmonic nanolasers not only clarifies the long-standing debate, but also endorses the exploration of them in various practical applications such as near-field spectroscopy and sensing, integrated optical interconnects, solid-state lighting, and free-space optical communication.

18.
Phys Rev Lett ; 121(3): 033603, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30085795

RESUMO

Levitated optomechanics has great potential in precision measurements, thermodynamics, macroscopic quantum mechanics, and quantum sensing. Here we synthesize and optically levitate silica nanodumbbells in high vacuum. With a linearly polarized laser, we observe the torsional vibration of an optically levitated nanodumbbell. This levitated nanodumbbell torsion balance is a novel analog of the Cavendish torsion balance, and provides rare opportunities to observe the Casimir torque and probe the quantum nature of gravity as proposed recently. With a circularly polarized laser, we drive a 170-nm-diameter nanodumbbell to rotate beyond 1 GHz, which is the fastest nanomechanical rotor realized to date. Smaller silica nanodumbbells can sustain higher rotation frequencies. Such ultrafast rotation may be used to study material properties and probe vacuum friction.

19.
Nat Commun ; 8(1): 1889, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29192161

RESUMO

Plasmonic nanolasers are a new class of amplifiers that generate coherent light well below the diffraction barrier bringing fundamentally new capabilities to biochemical sensing, super-resolution imaging, and on-chip optical communication. However, a debate about whether metals can enhance the performance of lasers has persisted due to the unavoidable fact that metallic absorption intrinsically scales with field confinement. Here, we report plasmonic nanolasers with extremely low thresholds on the order of 10 kW cm-2 at room temperature, which are comparable to those found in modern laser diodes. More importantly, we find unusual scaling laws allowing plasmonic lasers to be more compact and faster with lower threshold and power consumption than photonic lasers when the cavity size approaches or surpasses the diffraction limit. This clarifies the long-standing debate over the viability of metal confinement and feedback strategies in laser technology and identifies situations where plasmonic lasers can have clear practical advantage.

20.
Opt Lett ; 42(11): 2134-2137, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569863

RESUMO

We exploit distributed optoelectronic properties enabled by graphene Bragg gratings (GBGs) to realize a hybrid single-mode laser on silicon. This hybrid laser achieves single-mode, continuous-wave operation at 1540 nm with a remarkable side-mode suppression ratio of 48 dB, benefitting from the coupling of the GBGs. These results suggest that graphene thin films can be used as an essential and cost-saving component for hybrid photonic integration on silicon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...