Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 59, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38475771

RESUMO

BACKGROUND: Hmong-Mien (HM) speakers are linguistically related and live primarily in China, but little is known about their ancestral origins or the evolutionary mechanism shaping their genomic diversity. In particular, the lack of whole-genome sequencing data on the Yao population has prevented a full investigation of the origins and evolutionary history of HM speakers. As such, their origins are debatable. RESULTS: Here, we made a deep sequencing effort of 80 Yao genomes, and our analysis together with 28 East Asian populations and 968 ancient Asian genomes suggested that there is a strong genetic basis for the formation of the HM language family. We estimated that the most recent common ancestor dates to 5800 years ago, while the genetic divergence between the HM and Tai-Kadai speakers was estimated to be 8200 years ago. We proposed that HM speakers originated from the Yangtze River Basin and spread with agricultural civilization. We identified highly differentiated variants between HM and Han Chinese, in particular, a deafness-related missense variant (rs72474224) in the GJB2 gene is in a higher frequency in HM speakers than in others. CONCLUSIONS: Our results indicated complex gene flow and medically relevant variants involved in the HM speakers' evolution history.


Assuntos
Conexina 26 , Pool Gênico , Genética Populacional , Humanos , Povo Asiático , China , Genômica
2.
Nutrients ; 16(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474875

RESUMO

The type and composition of food strongly affect the variation and enrichment of the gut microbiota. The gut-microbiota-spleen axis has been developed, incorporating the spleen's function and maturation. However, how short-chain fatty-acid-producing gut microbiota can be considered to recover spleen function, particularly in spleens damaged by changed gut microbiota, is unknown in geese. Therefore, the gut microbial composition of the caecal chyme of geese was assessed by 16S rRNA microbial genes, and a Tax4Fun analysis identified the enrichment of KEGG orthologues involved in lipopolysaccharide production. The concentrations of LPS, reactive oxygen species, antioxidant/oxidant enzymes, and immunoglobulins were measured from serum samples and spleen tissues using ELISA kits. Quantitative reverse transcription PCR was employed to detect the Kelch-like-ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2), B cell and T cell targeting markers, and anti-inflammatory/inflammatory cytokines from the spleen tissues of geese. The SCFAs were determined from the caecal chyme of geese by using gas chromatography. In this study, ryegrass-enriched gut microbiota such as Eggerthellaceae, Oscillospiraceae, Rikenellaceae, and Lachnospiraceae attenuated commercial diet-induced gut microbial alterations and spleen dysfunctions in geese. Ryegrass significantly improved the SCFAs (acetic, butyric, propionic, isovaleric, and valeric acids), AMPK pathway-activated Nrf2 redox signaling cascades, B cells (B220, CD19, and IgD), and T cells (CD3, CD4, CD8, and IL-2, with an exception of IL-17 and TGF-ß) to activate anti-inflammatory cytokines (IL-4 and IL-10) and immunoglobulins (IgA, IgG, and IgM) in geese. In conclusion, ryegrass-improved reprogramming of the gut microbiota restored the spleen functions by attenuating LPS-induced oxidative stress and systemic inflammation through the gut-microbiota-spleen axis in geese.


Assuntos
Microbioma Gastrointestinal , Lolium , Microbioma Gastrointestinal/fisiologia , Proteína 1 Associada a ECH Semelhante a Kelch , Lipopolissacarídeos , Baço , Disbiose , RNA Ribossômico 16S , Fator 2 Relacionado a NF-E2 , Dieta , Citocinas , Anti-Inflamatórios , Imunoglobulinas
3.
Int J Biol Macromol ; 261(Pt 1): 129696, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280701

RESUMO

Infancy is a critical period in the maturation of the gut microbiota and a phase of susceptibility to gut microbiota dysbiosis. Early disturbances in the gut microbiota can have long-lasting effects on host physiology, including intestinal injury and diarrhea. Fecal microbiota transplantation (FMT) can remodel gut microbiota and may be an effective way to treat infant diarrhea. However, limited research has been conducted on the mechanisms of infant diarrhea and the regulation of gut microbiota balance through FMT, primarily due to ethical challenges in testing on human infants. Our study demonstrated that elevated Lipopolysaccharides (LPS) levels in piglets with diarrhea were associated with colon microbiota dysbiosis induced by early weaning. Additionally, LPS upregulated NLRP3 levels by activating TLR4 and inducing ROS production, resulting in pyroptosis, disruption of the intestinal barrier, bacterial translocation, and subsequent inflammation, ultimately leading to diarrhea in piglets. Through microbiota regulation, FMT modulated ß-PBD-2 secretion in the colon by increasing butyric acid levels. This modulation alleviated gut microbiota dysbiosis, reduced LPS levels, attenuated oxidative stress and pyroptosis, inhibited the inflammatory response, maintained the integrity of the intestinal barrier, and ultimately reduced diarrhea in piglets caused by colitis. These findings present a novel perspective on the pathogenesis, pathophysiology, prevention, and treatment of diarrhea diseases, underscoring the significance of the interaction between FMT and the gut microbiota as a critical strategy for treating diarrhea and intestinal diseases in infants and farm animals.


Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Lactente , Humanos , Animais , Suínos , Transplante de Microbiota Fecal/efeitos adversos , Transplante de Microbiota Fecal/métodos , Lipopolissacarídeos , Microbioma Gastrointestinal/fisiologia , Disbiose/microbiologia , Piroptose , Diarreia/microbiologia , Estresse Oxidativo
4.
Int J Biol Macromol ; 260(Pt 1): 129406, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224797

RESUMO

To clarify the relationship between gelatinization degree and structure characteristics, oat kernels were roasted to different gelatinization degree of 15 %-90 % based on tempering water content of 22.5 %-35 %, and the structure characteristics of starch and protein were evaluated. The results showed that the increased gelatinization degree dependent on tempering water content promoted protein aggregation on the surface of starch particles, forming larger aggregates with molecular weight >100 kDa. Oat kernels presented a dense starch gel network structure induced by gelatinized starch. Partial gelatinization of starch led to a decrease in pasting viscosities (setback viscosity, 3.91 Pa·s-1.59 Pa·s) and enthalpy (5.12 J/g-0.11 J/g). With the increase of gelatinization degree, the starch crystal structure conversed from A + V type to V type, accompanied by the formation of starch-lipid complexes and a decrease of relative crystallinity (22.28 %-8.72 %). Moreover, 50 % gelatinized oat flour possessed the highest ß-sheet structure (38.04 %), but a decrease in surface hydrophobicity and an increase in endogenous fluorescence intensity were found in oat flour of gelatinization degree >50 %. This study provided a theoretical reference for the application of oat flour with different gelatinization degrees to match suitable products.


Assuntos
Avena , Amido , Amido/química , Farinha , Viscosidade , Água/química
5.
Invest Ophthalmol Vis Sci ; 65(1): 42, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38271187

RESUMO

Purpose: Pigmentation in uveal melanoma is associated with increased malignancy and is known as a barrier for photodynamic therapy. We investigated the role of pigmentation in tumor behavior and the response to light-activated Belzupacap sarotalocan (Bel-sar) treatment in a pigmented (wild type) and nonpigmented (tyrosinase knock-out [TYR knock-out]) cell line in vitro and in a murine model. Methods: The B16F10 (TYR knock-out) was developed using CRISPR/Cas9. After the treatment with light-activated Bel-sar, cytotoxicity and exposure of damage-associated molecular patterns (DAMPs) were measured by flow cytometry. Treated tumor cells were co-cultured with bone marrow-derived macrophages (BMDMs) and dendritic cells (DCs) to assess phagocytosis and activation. Both cell lines were injected subcutaneously in syngeneic C57BL/6 mice. Results: Knock-out of the tyrosinase gene in B16F10 led to loss of pigmentation and immature melanosomes. Pigmented tumors contained more M1 and fewer M2 macrophages compared with amelanotic tumors. Bel-sar treatment induced near complete cell death, accompanied with enhanced exposure of DAMPs in both cell lines, resulting in enhanced phagocytosis of BMDMs and maturation of DCs. Bel-sar treatment induced a shift to M1 macrophages and delayed tumor growth in both in vivo tumor models. Following treatment, especially the pigmented tumors and their draining lymph nodes contained IFN-gamma positive CD8+T cells. Conclusions: Pigmentation influenced the type of infiltrating macrophages in the tumor, with more M1 macrophages in pigmented tumors. Belzupacap sarotalocan treatment induced immunogenic cell death and tumor growth delay in pigmented as well as in nonpigmented models and stimulated M1 macrophage influx in both models.


Assuntos
Melanoma , Animais , Camundongos , Melanoma/genética , Monofenol Mono-Oxigenase/metabolismo , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Pigmentação
6.
Exp Dermatol ; 33(1): e14966, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897113

RESUMO

Nutrients provide vital functions in the body for sustained health, which have been shown to be related to the incidence, prevention and treatment of disease. However, limited bioavailability, loss of targeting specificity and the increased hepatic metabolism limit the utilization of nutrients. In this review, we highlight transdermal absorption of nutrients, which represents an opportunity to allow great use of many nutrients with promising human health benefits. Moreover, we describe how the various types of permeation enhancers are increasingly exploited for transdermal nutrient delivery. Chemical penetration enhancers, carrier systems and physical techniques for transdermal nutrient delivery are described, with a focus on combinatorial approaches. Although there are many carrier systems and physical techniques currently in development, with some tools currently in advanced clinical trials, relatively few products have achieved full translation to clinical practice. Challenges and further developments of these tools are discussed here in this review. This review will be useful to researchers interested in transdermal applications of permeation enhancers for the efficient delivery of nutrients, providing a reference for supporting the need to take more account of specific nutritional needs in specific states.


Assuntos
Sistemas de Liberação de Medicamentos , Absorção Cutânea , Humanos , Administração Cutânea , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos/métodos , Pele/metabolismo
7.
Int J Biol Macromol ; 255: 128199, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979754

RESUMO

Wheat bran dietary fiber (WBDF) is an emerging food additive used for improving the nutritional value of dough products, albeit its adverse effects cannot be ignored. The dilution effect, mechanical shear effect, competitive water absorption, and steric hindrance of WBDF, as well as the non-covalent binding between WBDF and gluten protein, are considered the key mechanisms underlying the WBDF-gluten protein interaction. However, current studies on the interaction are mostly limited to the impact of the interaction on gluten protein and are rarely focused on the quality of products. Therefore, the effects of the interaction on the structural characteristics and aggregation behavior of gluten protein and multiple involved mechanisms are discussed in this review. On this basis, these changes are systematically related to the gluten network structure, dough properties, and product quality. Mitigation measures corresponding to negative impacts also need to be elaborated to guide and standardize the production and development of dough products containing WBDF.


Assuntos
Fibras na Dieta , Glutens , Glutens/química , Pão , Fenômenos Químicos , Aditivos Alimentares/química , Farinha
8.
mSystems ; 9(1): e0097323, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38112462

RESUMO

Dengue fever is a mosquito-borne tropical disease caused by the dengue virus (DENV). The replication of DENV relies on the processing of its genome-encoded polyprotein by both viral protease NS3 (NS3pro) and host proteases. However, the impact of host proteases on DENV proliferation is not well understood. In this study, we utilized fluorophosphonate-based probes (FPs) to investigate the up-regulation of host serine proteases during DENV infection in detail. Among the identified proteases, acyl-CoA thioesterase 2 (ACOT2), an enzyme that hydrolyzes acyl-CoA molecules to generate fatty acids and free CoA, exhibited cleavage activity against DENV polypeptide substrates. Enzymatic assays and virological experiments confirmed that ACOT2 contributes to DENV propagation during the replication stage by cleaving the viral polyprotein. Docking models provided insights into the binding pocket of viral polypeptides and the catalytic mechanism of ACOT2. Notably, this study is the first to demonstrate that ACOT2 functions as a serine protease to hydrolyze protein substrates. These findings offer novel insights into DENV infection, host response, as well as the potential development of innovative antiviral strategies.IMPORTANCEDENV, one of the major pathogens of Dengue fever, remains a significant public health concern in tropical and subtropical regions worldwide. How DENV efficiently hijacks the host and accesses its life cycle with delicate interaction remains to be elucidated. Here, we deconvoluted that the host protease ACOT2 assists the DENV replication and characterized the ACOT2 as a serine protease involved in the hydrolysis of the DENV polypeptide substrate. Our results not only further the understanding of the DENV life cycle but also provide a possibility for the usage of activity-based proteomics to reveal host-virus interactions.


Assuntos
Vírus da Dengue , Dengue , Animais , Humanos , Vírus da Dengue/química , Serina Proteases , Poliproteínas , Serina Endopeptidases/química , Dengue/metabolismo , Peptídeos , Proliferação de Células , Tioléster Hidrolases
9.
Int J Biol Macromol ; 257(Pt 2): 128765, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096940

RESUMO

We herein evaluated the impact of adding wheat bran dietary fiber (WBDF) on the aggregation behavior of gluten in dough at various stages of the noodle-making process. Scanning electron microscopy and confocal laser scanning microscopy images confirmed the effective insertion of WBDF particles into the gluten matrix. Importantly, the gap between WBDF and gluten widened during the rolling process. The addition of WBDF led to a reduction in glutenin macropolymer (GMP) content and an elevation in sulfhydryl content, induced the depolymerization behaviors at the molecular level. Additionally, it facilitated the conversion of α-helices and ß-turns into ß-sheets and random coils within the dough. Moreover, the processing and addition of WBDF contributed to a decrease in weight loss, whereas the degradation temperature remained constant. Resting decreased the sulfhydryl content, whereas sheeting and cutting increased it, further fostering protein depolymerization in the presence of WBDF. These actions significantly increased the ß-sheets and random coils content at the expense of ß-turns and α-helices content. Significantly, controlled processing emerged as a crucial factor in enhancing gluten depolymerization induced by WBDF in the dough. This comprehensive study provides a nuanced perspective on controlling dough processing to strike a balance between dietary fiber-rich and high-quality foods.


Assuntos
Fibras na Dieta , Glutens , Fibras na Dieta/análise , Qualidade dos Alimentos , Temperatura , Farinha/análise
10.
Animals (Basel) ; 13(22)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38003191

RESUMO

INTRODUCTION: Geese can naturally obtain dietary fiber from pasture, which has anti-inflammatory and antioxidant properties. This study aimed to investigate the inhibitory impacts of pasture on ameliorating LPS-ROS-induced gut barrier dysfunction and liver inflammation in geese. Materials and methods. The lipopolysaccharides (LPS), alkaline phosphatase (ALP), reactive oxygen species (ROS), tight junction proteins, antioxidant enzymes, immunoglobulins, and metabolic syndrome were determined using ELISA kits. The Kelch-like-ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2) and inflammatory cytokines were determined using the quantitative reverse transcription PCR (RT-qPCR) method. The intestinal morphology was examined using the Hematoxylin and Eosin (H&E) staining method in ileal tissues. Results. Pasture significantly influences nutrient absorption (p < 0.001) by ameliorating LPS and ROS-facilitated ileal permeability (p < 0.05) and systemic inflammation (p < 0.01). Herein, the gut permeability was paralleled by liver inflammation, which was significantly mimicked by ALP-dependent Nrf2 (p < 0.0001) and antioxidant enzyme activation (p < 0.05). Indeed, the correlation analysis of host markers signifies the importance of pasture in augmenting geese's health and production by averting gut and liver inflammation. Conclusions. Our results provide new insight into the mechanism of the pasture-induced ALP-dependent Nrf2 signaling pathway in limiting systemic inflammation in geese.

11.
Int J Biol Macromol ; 253(Pt 7): 127344, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37848107

RESUMO

The continued viral evolution results in the emergence of various SARS-CoV-2 variants, such as delta or omicron, that are partially resistant to current vaccines and antiviral medicines, posing an increased risk to global public health and raising the importance of continuous development of antiviral medicines. Inhibitor screening targeting the interactions between the viral spike proteins and their human receptor ACE2 represents a promising approach for drug discovery. Here, we demonstrate that the evolutionary trend of the SARS-CoV-2 variants is associated with increased electrostatic interactions between S proteins and ACE2. Virtual screening based on the ACE2-RBD binding interface identified nine monomers of Traditional Chinese medicine (TCM). Furthermore, live-virus neutralization assays revealed that Dauricine, one of the identified monomers, exhibited an antiviral activity with an IC50 range of 18.2 to 33.3 µM for original strain, Delta, and Omicron strains, respectively. The computational study showed that the polycyclic and methoxy groups of Dauricine adhere to the RBD surface through π-π and electrostatic interactions. The discovery of Dauricine is a successful attempt to target viral entry, which will not only help society to respond quickly to viral variants, but also accelerate variant drug development thereby reducing the pressure on health authorities to respond to outbreaks.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Antivirais/farmacologia , Ligação Proteica
12.
Int J Biol Macromol ; 253(Pt 7): 127164, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37778582

RESUMO

To understand the heat mediated cross-linking mechanism of gluten in the presence of wheat bran dietary fiber (WBDF), the effect of heat treatment on conformation and aggregation properties of wheat bran dietary fiber-gluten protein was comparatively investigated in this study. The results showed G' and G" increased after adding WBDF, then decreased after heating. The SE-HPLC, chemical interaction and surface hydrophobicity analysis revealed the WBDF participated in the rearrangement of intermolecular interactions and induced depolymerization behavior behavior of gluten via disulfide and non-covalent bonds at low temperatures (25 °C and 60 °C), but heating (at 95 °C) promoted these interactions via disulfide bonds. Besides, changes in the secondary structure of gluten protein induced by WBDF during heating were correlated with the steric hindrance and hydroxyl groups on WBDF. These results suggested that WBDF impeded the cross-linking and aggregation of gluten through the rearrangement of chemical bonds and physical entanglements, then this effect was weakened at high temperatures, most likely by improving the disulfide bonds among gluten proteins. This study consummates the understanding of the cross-linking mechanisms of gluten with WBDF during heating, and provides the theoretical basis for improving the quality and acceptability of whole wheat-based products.


Assuntos
Glutens , Temperatura Alta , Glutens/química , Fibras na Dieta/análise , Estrutura Secundária de Proteína , Dissulfetos/química
13.
Food Chem X ; 19: 100815, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37780297

RESUMO

The effects of alfalfa leaf meal (ALM) on the meat quality of finishing pigs are largely unknown. Here, we investigated the effects of ALM diet on meat quality by replacing 0%, 25%, 50%, and 75% of soybean meal in the diet of finishing pigs, respectively. The findings showed that 25% ALM diet increased the IMF, cooked meat rate, a* and antioxidant capacity of longissimus dorsi (LD), improved amino acid composition, increased MUFA content, and increased LD lipid synthesis and mRNA expression of antioxidation-related genes. At the same time, ALM diet altered serum lipid metabolism (TG, FFA). Correlation analysis showed that antioxidant capacity was positively correlated with meat quality. In addition, metabolomic analysis of LD showed that the main metabolites of 25% ALM diet altered stachydrine and l-carnitine were associated with meat quality and antioxidant capacity. In conclusion, ALM replacing 25% soybean meal diet can improve the meat quality of pigs.

14.
Foods ; 12(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37893679

RESUMO

Peanut vine is a typical peanut by-product and can be used as a quality roughage resource. Whole-plant corn silage is a commonly used roughage. However, few studies have investigated the effects of diets combining peanut vine and whole-plant corn silage on growth performance, antioxidant capacity, meat quality, rumen fermentation and microbiota of beef cattle. To investigate these effects, eighty Simmental crossbred cattle (body weight, 451.27 ± 10.38 kg) approximately 14 months old were randomly divided into four treatments for a 90-day feeding experiment. A one-way design method was used in this experiment. According to the roughage composition, the cattle were divided into a control treatment of 45% wheat straw and 55% whole-plant corn silage (WG), and three treatments of 25% peanut vine and 75% whole-plant corn silage (LPG), 45% peanut vine and 55% whole-plant corn silage (MPG), and 65% peanut vine and 35% whole-plant corn silage (HPG), and the concentrate was the same for all four treatment diets. The results showed that compared to the WG group, the MPG group experienced an increase in their average daily feed intake of 14%, an average daily gain of 32%, and an increase in SOD activity in the spleen of 33%; in the meat, dry matter content increased by 11%, crude protein by 9%, and ether extract content by 40%; in the rumen, the NH3-N content was reduced by 36%, the relative abundance of Firmicutes increased, and the relative abundance of Bacteroidetes decreased (p < 0.05). These results showed the composition of 45% peanut vine and 55% whole-plant corn silage in the roughage improved growth performance, antioxidant capacity, meat quality, rumen fermentation, and microbiota of beef cattle.

15.
Heliyon ; 9(10): e20803, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37867798

RESUMO

The use of high-quality roughage to improve beef quality has become an important issue in China, as the country has become the world's largest beef consumer. This study aimed to evaluate the effects of different forage qualities (wheat straw vs alfalfa hay) on Simmental crossbreed cattle's meat quality, rumen fermentation and microbiota. AHG (Alfalfa hay group) improved the ADFI (Average daily feed intake) and ADG (Average daily gain) of the beef cattle, meat-to-bone ratio and EE (Ether extract). The C18:3n3 and C20:3n3 composition of LD in AHG was significantly higher than WSG. An increase in the relative abundance of Firmicutes and a decrease in Bacteroidetes was observed. AHG resulted in higher relative abundance of Saccharomonospora, Streptomyces. A negative correlation between Treponema and muscle PUFA was noticed. Prevotella was negatively correlated with starch and sucrose metabolism. In conclusion, current study demonstrates that feeding alfalfa hay can raise meat quality by altering the rumen microbiota, providing valuable information for the application of alfalfa hay in beef cattle breeding.

16.
Nutrients ; 15(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836386

RESUMO

Smilax glabra Roxb (S. glabra) is a conventional Chinese medicine that is mainly used for the reliability of inflammation. However, bioactive polysaccharides from S. glabra (SGPs) have not been thoroughly investigated. Here, we demonstrate for the first time that SGPs preserve the integrity of the gut epithelial layer and protect against intestinal mucosal injury induced by dextran sulfate sodium. Mechanistically, SGPs mitigated colonic mucosal injury by restoring the association between the gut flora and innate immune functions. In particular, SGPs increased the number of goblet cells, reduced the proportion of apoptotic cells, improved the differentiation of gut tight junction proteins, and enhanced mucin production in the gut epithelial layer. Moreover, SGPs endorsed the propagation of probiotic bacteria, including Lachnospiraceae bacterium, which strongly correlated with decreased pro-inflammatory cytokines via the blocking of the TLR-4 NF-κB and MyD88 pathways. Overall, our study establishes a novel use of SGPs for the treatment of inflammatory bowel disease (IBD)-associated mucosal injury and provides a basis for understanding the therapeutic effects of natural polysaccharides from the perspective of symbiotic associations between host innate immune mechanisms and the gut microbiome.


Assuntos
Colite , Microbioma Gastrointestinal , Smilax , Animais , Camundongos , Reprodutibilidade dos Testes , Colo , Polissacarídeos/efeitos adversos , Imunidade , Sulfato de Dextrana/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
17.
Foods ; 12(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37685141

RESUMO

Because the demand for pork is increasing, it is crucial to devise efficient and green methods to improve the quality and quantity of meat. This study investigated the improvement in pork quality after the inclusion of alfalfa meal or alfalfa silage in pig diet. Our results indicated that alfalfa silage improved meat quality more effectively in terms of water-holding capacity, drip loss, and marbling score. Besides, an alfalfa silage diet can affect the level of fatty acids and amino acids in pork. Further, alfalfa silage was found to improve meat quality by remodeling intestinal microbiota and altering the level of SCFAs, providing a viable option for improving meat quality through forage.

18.
Adv Healthc Mater ; 12(31): e2302046, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37605325

RESUMO

Immunotherapies targeting immune checkpoints have revolutionized cancer treatment by normalizing the immunosuppressive microenvironment of tumors and reducing adverse effects on the immune system. Indoleamine 2,3-dioxygenase (IDO) inhibitors have garnered attention as a promising therapeutic agent for cancer. However, their application alone has shown limited clinical benefits. Cabozantinib, a multitarget tyrosine kinase inhibitor, holds immunomodulatory potential by promoting infiltration and activation of effector cells and inhibiting suppressive immune cells. Despite its potential, cabozantinib as a monotherapy has shown limited efficacy in terms of objective response rate. In this study, IDO-IN-7 and cabozantinib are coencapsulated into liposomes to enhance tumor accumulation and minimize adverse effects. The liposomal combination exhibits potent cytotoxicity and inhibits the function of IDO enzyme. Furthermore, the dual-targeted treatment effectively inhibits tumor development and reverses the suppressive tumor microenvironment by regulating both adaptive and innate branch of immune system. This is evidenced by pronounced infiltration of T cells and B cells, a decrease of regulatory T lymphocytes, a shift to a proinflammatory phenotype of tumor-associated macrophages, and increases levels of neutrophils. This is the first developed of a liposome-delivered combination of IDO inhibitors and cabozantinib, and holds great potential for future clinical application as a promising anticancer strategy.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Imunomodulação , Imunoterapia , Anilidas/farmacologia , Anilidas/uso terapêutico , Neoplasias/tratamento farmacológico , Lipossomos/farmacologia
19.
Invest Ophthalmol Vis Sci ; 64(7): 10, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37272766

RESUMO

Purpose: The virus-like drug conjugate belzupacap sarotalocan (AU-011), currently under clinical investigation for first-line treatment of primary uveal melanoma (UM), shows enhanced tumor specificity by targeting heparan sulfate proteoglycans (HSPG). Such a treatment may potentially lead to systemic immune responses. We studied the potential of AU-011 treatment to induce immunogenic cell death as the first step to induce systemic immunity. Methods: We determined binding and uptake of AU-011 in ten primary and metastatic UM cell lines. The subcellular location of AU-011 was assessed by fluorescence microscopy. Following light activation (wavelength 690 nm) of AU-011, the half-maximal effective concentration (EC50) of AU-011 treatment and exposure of damage-associated molecular patterns (DAMPs) were assessed using flow cytometry. DAMPs were measured by RNAseq. Results: Fluorescence microscopy revealed most of the AU-011 was present in the cytoplasm. AU-011 binding and uptake by UM cells increased over time, with a lower uptake in BAP1-negative than in BAP1-positive cell lines. AU-011 activation induced cell death across all UM cell lines with EC50 values at picomolar concentrations. The AU-011 concentration and total light dose (J/cm2) were the most important parameters for the observed cytotoxicity. Finally, light-activated AU-011 induced exposure of DAMPs calreticulin (CRT) and HSP90. CRT exposure by light-activated AU-011 as well as CRT RNA exposure were lower in BAP1-negative compared to BAP1-positive UM cell lines. Conclusions: AU-011 treatment at low picomolar range induces immunogenic cell death in all 10 UM cell lines. The in vitro cytotoxicity was accompanied by exposure of DAMPs (HSP90 and CRT), suggesting AU-011 may contribute to the development of systemic immunity and be a suitable candidate for combination with immunotherapy in vivo. AU-011 treatment was more effective against BAP1-positive cell lines, with a lower EC50 and higher CRT exposure.


Assuntos
Melanoma , Neoplasias Uveais , Humanos , Neoplasias Uveais/genética , Melanoma/genética , Imunização , Técnicas In Vitro , Ubiquitina Tiolesterase/genética , Proteínas Supressoras de Tumor
20.
Nature ; 619(7968): 112-121, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37316654

RESUMO

Human genomics is witnessing an ongoing paradigm shift from a single reference sequence to a pangenome form, but populations of Asian ancestry are underrepresented. Here we present data from the first phase of the Chinese Pangenome Consortium, including a collection of 116 high-quality and haplotype-phased de novo assemblies based on 58 core samples representing 36 minority Chinese ethnic groups. With an average 30.65× high-fidelity long-read sequence coverage, an average contiguity N50 of more than 35.63 megabases and an average total size of 3.01 gigabases, the CPC core assemblies add 189 million base pairs of euchromatic polymorphic sequences and 1,367 protein-coding gene duplications to GRCh38. We identified 15.9 million small variants and 78,072 structural variants, of which 5.9 million small variants and 34,223 structural variants were not reported in a recently released pangenome reference1. The Chinese Pangenome Consortium data demonstrate a remarkable increase in the discovery of novel and missing sequences when individuals are included from underrepresented minority ethnic groups. The missing reference sequences were enriched with archaic-derived alleles and genes that confer essential functions related to keratinization, response to ultraviolet radiation, DNA repair, immunological responses and lifespan, implying great potential for shedding new light on human evolution and recovering missing heritability in complex disease mapping.


Assuntos
População do Leste Asiático , Etnicidade , Variação Genética , Genoma Humano , Genética Humana , Grupos Minoritários , Humanos , População do Leste Asiático/classificação , População do Leste Asiático/genética , Etnicidade/genética , Genoma Humano/genética , Análise de Sequência de DNA , Raios Ultravioleta , Genética Humana/normas , Minorias Étnicas e Raciais , Padrões de Referência , Haplótipos/genética , Eucromatina/genética , Alelos , Reparo do DNA/genética , Queratinas/genética , Queratinas/metabolismo , Longevidade/genética , Imunidade/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...