Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38337894

RESUMO

Field experiments were conducted to analyze the effectiveness of the crop stress index (CWSI) obtained by infrared thermal imaging to indicate crop water status, and to determine the appropriate CWSI threshold range for wheat at different growth stages. The results showed that the sensitivity of plant physiological parameters to soil water was different at different growth stages. The sensitivity of stomatal conductance (Gs) and transpiration rate (Tr) to soil water was higher than that of leaf relative water content (LRWC) and photosynthetic rate (Pn). The characteristics of plant physiology and biomass (yield) at each growth stage showed that the plant production would not suffer from drought stress as long as the soil water content (SWC) was maintained above 57.0% of the field water capacity (FWC) during the jointing stage, 63.0% of the FWC during the flowering stage and 60.0% of the FWC during the filling stage. Correlation analysis showed that the correlation of CWSI with Gs, Tr and Pn was lower than that with LRWC and SWC at the jointing stage. CWSI was extremely significantly negatively correlated with SWC and LRWC (p < 0.01), but significantly negatively correlated with Gs, Tr and Pn (p < 0.05). At the flowering stage, CWSI was extremely significantly negatively correlated with all physiological and soil parameters (p < 0.01). The regression analysis showed that the CWSI of winter wheat was correlated with biomass (grain yield) in a curvilinear relationship at each growth stage. When the CWSI increased to a certain extent, the biomass and yield showed a decreasing trend with the increase in CWSI. Comprehensive analysis of all indexes showed that CWSI can be used as a decision-making index to guide the water-saving irrigation of winter wheat, as long as the CWSI threshold of plants was maintained at 0.26-0.38 during the jointing stage, 0.27-0.32 during the flowering stage and 0.30-0.36 during the filling stage, which could not only avoid the adverse effects of water stress on crop production, but also achieve the purpose of water saving.

2.
Front Plant Sci ; 14: 1201966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457351

RESUMO

Proper irrigation and fertilization measures can not only improve water and fertilizer utilization efficiency, but also have important significance in ensuring agricultural environment security and sustainable development. A field experiment was conducted to determine the optimal drip fertilization measure of winter wheat and explain its mechanism by analyzing the physiological and ecological characteristics and utilization efficiency of water and nitrogen under different irrigation and fertilization methods. The plants were treated with three irrigation and fertilization methods: the traditional irrigation and fertilization method (CK), surface drip fertilization (I1) and underground drip fertilization (I2). The results demonstrated that different irrigation methods had various effects on population and physiological characteristics of wheat. The plant height, leaf area and tiller number of I1 were significantly higher than those of CK during the whole growth period. I2 decreased plant height, leaf area and tiller number at jointing stage, but at flowering stage, the leaf area of I2 t was significantly higher than that of CK. Different irrigation methods also affected the root distribution of wheat. At flowering stage, I1 had lower root biomass than CK in all soil layers. The upper root system of I2 was smaller, but the deep root system was larger compared with the control. I1 and I2 had lower total root weight and higher shoot biomass compared to CK, so their root-shoot ratio decreased significantly. I1 and I2 increased and instantaneous water use efficiency (IWUE) by increasing the photosynthetic rate (Pn) and reducing transpiration rate (Tr) at the flowering stage, while I2 had a similar Pn to I1, but reduced Tr, resulting in a higher IWUE than I1. Both I1 and I2 also increased root efficiency, root activity, and Fv/Fm of wheat at the late growth stage, promoting accumulated dry matter after flowering (ADM) and pre-flowering dry matter remobilization (DMR), leading to a significant increase in grain yield. In addition, I1 and I2 had significantly higher water productivity (WP), irrigation water productivity (IWP), nitrogen partial productivity (NPP) and nitrogen agronomic efficiency (NAE) than CK, especially I2 had the highest IWP, WP, NPP and NAE. These findings highlight the potential benefits of drip fertilization in promoting sustainable wheat production and elucidate the mechanism by which it promotes efficient use of water and fertilizer.

3.
Front Plant Sci ; 11: 508, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477381

RESUMO

Understanding the temporal and spatial patterns of soil water extraction and their impacts on growth response of winter wheat to deficit subsurface drip irrigation (SDI) conditions is critical for managing water scarcity and stabilizing yield. A field experiment was conducted from 2016 to 2018 involving five SDI amounts: 0.25, 0.4, 0.6, 0.8, and 1.0 ETc, representing 25, 40, 60, 80, and 100% of crop evapotranspiration (ETc), respectively. The results showed that the 0.6 ETc treatment significantly increased soil water extraction from 40-80 and 80-140-cm from jointing to maturity as compared to the 1.0 ETc treatment. Whereas the 0.8 ETc treatment significantly increased soil water extraction from 80-140-cm deep soil from flowering to maturity in the first growing season. The crop was most water-stressed under the 0.25 and 0.4 ETc treatments, thus extracted more soil water from 0-140-cm soil profile. However, both treatments exhibited minimum plant tillers, lowest leaf water content, leaf area index (LAI), photosynthetic rate (P n ), and transpiration rate (T r ) as well as grain yield. All these parameters, except for leaf water content, P n after the flowering stage, and grain productivity, were also reduced in the 0.6 ETc treatment than the 1.0 ETc treatment. The differences between the 0.8 and 1.0 ETc treatments were minor in terms of plant height, LAI, spike number, P n and T r , but infertile tillers were fewer in the 0.8 ETc treatment. We obtained high yield from the 0.8 ETc treatment, and the 0.6ETc treatment resulted in the highest harvest index with improved WUE than other treatments. Integrating deficit irrigation into SDI can save water in winter wheat production in water-limited regions, which can not only enhance soil water extraction from deep soil layers, but also sustained yield by stimulating crop growth. Therefore, a deficit SDI system would be used to conserve water in water-limited regions.

4.
Sci Total Environ ; 725: 138342, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32464745

RESUMO

Spring green-up date (GUD) is a sensitive indicator of climate change, and of great significance to winter wheat production. However, our knowledge of the chain relationships among them is relatively weak. In this study, based on 8-day Enhanced Vegetation Index (EVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS) from 2001 to 2015, we first assessed the performance of four algorithms for extracting winter wheat GUD in the North China Plain (NCP). A multiple linear regression model was then established to quantitatively determine the contributions of the time lag effects of hydrothermal variation on GUD. We further investigated the interactions between GUD and gross primary production (GPP) comprehensively. Our results showed that the rate of change in curvature algorithm (RCCmax) had better performance in capturing the spatiotemporal variation of winter wheat GUD relative to the other three methods (Kmax, CRmax, and cumCRmax). Regarding the non-identical lag time effects of hydrothermal factors, hydrothermal variations could explain winter wheat GUD variations for 82.05% of all pixels, 36.78% higher than that without considering the time lag effects. Variation in GUD negatively correlated with winter wheat GPP after green up in most parts of the NCP, significantly in 35.75% of all pixels with a mean rate of 1.89 g C m-2 yr-1 day-1. Meanwhile, winter wheat GPP exerted a strongly positive feedback on GUD in >82.42% of all pixels (significant in 28.01% of all pixels), characterized by a humped-shape pattern along the long-term average plant productivity. This finding highlights the complex interaction between spring phenology and plant productivity, and also suggests the importance of preseason climate factors on spring phenology.


Assuntos
Mudança Climática , Triticum , China , Imagens de Satélites , Estações do Ano
5.
Ecotoxicol Environ Saf ; 113: 483-90, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25562177

RESUMO

In China, coal-mining industries are mainly located in the water shortage areas including arid or semiarid areas. Mine wastewater is used for irrigation of agricultural land in these areas. However, few studies have been conducted to address ecological and food safety risks caused by mine wastewater irrigation. In this research, a pot experiment was performed to examine the effects of mine wastewater irrigation on soil enzymes, physiological properties of wheat and potential risks of heavy metal contamination to wheat crop. Plants were subjected to three mine wastewater irrigation treatments: leacheate of coal gangue (T1), coal-washing wastewater (T2) and precipitated coal-washing wastewater (T3). Plants irrigated with well water were taken as the control (CK). The results showed that mine wastewater irrigation caused adverse effects on soil enzymes, physiological properties and grain yield of winter wheat. At anthesis, T1, T2 and T3 treatments significantly reduced the activities of soil enzymes (urease, sucrase and catalase), root activity and net photosynthetic rate of wheat compared to CK. At maturity, grain yield was decreased by 17.8%, 15.4% and 9.8% by T1, T2 and T3, respectively, as compared to that of CK. Importantly, mine wastewater irrigation resulted in accumulation of heavy metals (Cr, Pb, Cu and Zn) in wheat grain. Contents of these heavy metals in grains of winter wheat subjected to mine wastewater irrigation were significantly higher than those in CK. The comprehensive contamination indexes of wheat grain in T1, T2 and T3 all reached high pollution level. Our results showed that mine wastewater irrigation significantly increased the pollution risk of heavy metals, thus unsuitable for crop irrigation.


Assuntos
Irrigação Agrícola , Metais Pesados/metabolismo , Solo/química , Triticum/metabolismo , Águas Residuárias/toxicidade , China , Grão Comestível/química , Enzimas/análise , Concentração de Íons de Hidrogênio , Resíduos Industriais , Metais Pesados/análise , Mineração , Fotossíntese , Raízes de Plantas/efeitos dos fármacos , Estações do Ano , Triticum/crescimento & desenvolvimento , Água
6.
Ying Yong Sheng Tai Xue Bao ; 26(11): 3315-21, 2015 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-26915185

RESUMO

A pot culture experiment was conducted to study the effects of postponing nitrogen (N) application on photosynthetic characteristics and grain yield of winter wheat subjected to water stress after heading stage. Equal in the total N rate in winter wheat growth season, N application was split before sowing, and/or at jointing and /or at anthesis at the ratio of 10:0:0 (N1), 6:4:0 (N2) and 4:3:3 (N3), combined with unfavorable water condition (either waterlogged or drought) with the sufficient water condition as control. The results showed that, under each of the water condition, both N2 and N3 treatments significantly improved the leaf photosynthetic rate and the SPAD value of flag leaf compared with N1 treatment during grain filling stage, and also the crop ear number, grain number per spike and above-ground biomass were increased. Although postponing nitrogen application increased water consumption, both grain yield and water use efficiency were increased. Compared with sufficient water supply, drought stress and waterlogging stress significantly reduced the photosynthetic rate of flag leaves at anthesis and grain filling stages, ear number, 1000-grain mass and yield under all of the N application patterns. The decline of photosynthetic rate under either drought stress or waterlogging stress was much less in N2 and N3 than in N1 treatments, just the same as the grain yield. The results indicated that postponing nitrogen application could regulate winter wheat yield as well as its components to alleviate the damages, caused by unfavorable water stress by increasing flag leaf SPAD and maintaining flag leaf photosynthetic rate after anthesis, and promoting above-ground dry matter accumulation.


Assuntos
Fertilizantes , Nitrogênio/química , Fotossíntese , Triticum/fisiologia , Agricultura/métodos , Desidratação , Secas , Água
7.
Ying Yong Sheng Tai Xue Bao ; 24(11): 3243-8, 2013 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-24564156

RESUMO

A pot experiment was conducted to study the effects of irrigation with mine wastewater on the physiological characters and heavy metals accumulation of winter wheat. Three treatments were installed, i. e., irrigation with coal-washing wastewater (T1), irrigation with coal-washing wastewater after its precipitation (T2), and irrigation with coal gangue leacheate (T3), taking the well water irrigation as the control (CK). The plants were irrigated with mine wastewater after the turning green stage. Irrigation with mine wastewater had negative effects on the winter wheat growth and grain yield. At anthesis stage, the leaf area, dry mass per stem, root activity, and net photosynthetic rate of winter wheat in treatments T1, T2, and T3 were significantly lower than those in CK (P < 0.05), the plant height and leaf chlorophyll content in T3 decreased significantly (P < 0.05), and the grain yield in T1, T2 and T3 was decreased by 15.4%, 9.8%, and 17.8%, respectively. In addition, the heavy metals (Cr, Pb, Cu and Zn) contents in the grain of winter wheat under mine wastewater irrigation were significantly higher than those in CK, suggesting that the irrigation with mine wastewater could result in the heavy metals accumulation in wheat grain.


Assuntos
Irrigação Agrícola/métodos , Metais Pesados/análise , Triticum/química , Triticum/crescimento & desenvolvimento , Águas Residuárias/química , China , Contaminação de Alimentos/análise , Mineração , Estações do Ano , Sementes/química
8.
Ying Yong Sheng Tai Xue Bao ; 19(1): 93-8, 2008 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-18419078

RESUMO

Taking two winter wheat (Triticum aestivum L.) cultivars Changwu 135 and Pingliang 40 commonly cultivated in the semi-arid area on Loess Plateau as test materials, and by the method of ecological replacement, a 2-year field experiment was conducted to study the effects of mono- and mixed culture on the grain yield and water use efficiency of the cultivars. The results showed that under mono-culture, Pingliang 40 had a much higher unit area root biomass (367.60 g x m(-2)) than Changwu 135 (297.31 g x m(-2)), and a more uniform root distribution (i.e., a better root type for water absorption), but its grain yield and water use efficiency were lower than Changwu 135. Under mixed culture, the population root biomass of Pingliang 40 and Changwu 135 was 13.36 g * m(-2) and 8.50 g x m(-2) higher than that under mono-culture, respectively, suggesting that mixed population could absorb the water in deeper soil layers, and had higher total unit area biomass, which in turn increased the water use efficiency. Comparing with Pingliang 40, Changwu 135 allocated more dry matter to its productive organ, leading to its higher grain yield, harvest index, and water use efficiency.


Assuntos
Biomassa , Raízes de Plantas/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Água/metabolismo , Agricultura/métodos , Grão Comestível/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Especificidade da Espécie , Triticum/classificação , Triticum/metabolismo
9.
Ying Yong Sheng Tai Xue Bao ; 17(10): 1849-53, 2006 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-17214018

RESUMO

The study with pot experiment showed that after cutting partial roots at returning green stage, the growth of winter wheat was restrained at early growth stage, and the leaf area was decreased significantly from returning green to jointing stage but restored to the level of the control at flowering stage. Under high soil moisture condition, root cutting increased the values of chlorophyll fluorescence parameters ETR, phiPS II , qp and qn, at jointing stage significantly. The accumulated dry matter weight per stem after anthesis was significantly higher in root-cut wheat (0. 81 g) than in the control (0. 56 g) , with the accumulation coefficient (AC) of root-cut wheat increased by 38. 79% , but no significant difference was observed in root weight. Under low soil moisture condition, there were no significant differences in the values of chlorophyll fluorescence parameters and accumulated dry matter weight per stem after anthesis between root-cut wheat and the control, but the root weight of root-cut wheat decreased significantly. Soil moisture didn' t enhance the compensation effect of the aboveground biomass and grain yield of root-cut wheat. Root cutting reduced the water consumption of winter wheat significantly. Under high soil moisture condition, root-cut wheat saved 2 000 ml of water, and its water use efficiency (WUE) ( 1. 97 g x kg (-1)) was significantly higher than that of the control (1.70 g x kg(-1)). Under low soil moisture condition, root-cut wheat saved 1500 ml of water, but there was no significant difference in the WUE between root-cut wheat and the control.


Assuntos
Adaptação Fisiológica/fisiologia , Raízes de Plantas/fisiologia , Solo/análise , Triticum/fisiologia , Água/metabolismo , Biomassa , Estações do Ano , Fatores de Tempo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...