Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Med Chem ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38676480

RESUMO

BACKGROUND: Ischemic stroke, the most common type of cerebrovascular accident, is a major cause of severe disability among adults worldwide. Although there has been progress in interventions for ischemic stroke in the past decades, there is no effective treatment to prevent brain damage in acute ischemic stroke. Therefore, it is urgent to develop novel neuroprotective agents with a wide therapeutic time window to provide a better prognosis for ischemic stroke patients. OBJECTIVE: The current study aimed to synthesize novel derivatives with substituent cinnamide scaffolds, evaluate biological activity, and obtain neuroprotective agents. METHODS: The target compounds were synthesized using classical methods of medicinal chemistry. The neuroprotective effects in vitro against Glu-induced neurotoxicity injury were evaluated in PC12 cells by MTT assay. The cell apoptosis was analyzed by flow cytometer. The proteins were detected by western blotting. The neuroprotective activities in vivo were determined in two in vivo models of global and focal cerebral ischemia. RESULTS: Among the title compounds, 9t, 9u, 9y, and 9z exhibited good neuroprotection in vivo and in vitro, which were selected and further studied to determine their mechanism of action. 9t, 9u, 9y and 9z protected PC12 cells against glutamate-induced apoptosis in a dose-dependent manner via caspase-3 pathway. Moreover, the four compounds significantly reduced brain infarct area and exhibited excellent neuroprotective activities in the in vivo MCAO model. CONCLUSION: Compounds 9t, 9u, 9y, and 9z, as potent neuroprotective agents with anti- neurotoxicity activity in vitro and anticerebral infarction efficacy in vivo, might serve as a useful molecular tool for further physiology and pathophysiology function studies, leading to potential clinical therapeutic agents for ischemic injury.

2.
Eur J Pharm Biopharm ; 174: 144-154, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35447349

RESUMO

Macrophage/foam cells and cholesterol crystals (CCs) have been regarded as the central triggers of maladaptive inflammation in atherosclerotic plaque. Despite the tremendous progress of recombinant high-density lipoprotein (rHDL) serving for targeted drug delivery to alleviate inflammation in macrophage/foam cells, the active attempt to modulate/improve its CCs dissolution capacity remains poorly explored. The untreated CCs can seriously aggravate inflammation and threaten plaque stability. Based on the superb ability of ß-cyclodextrin (ß-CD) to bind CCs and promote cholesterol efflux, simvastatin-loaded discoidal-rHDL (ST-d-rHDL) anchored with ß-CD (ßCD-ST-d-rHDL) was constructed. We verified that ßCD-ST-d-rHDL specifically bound and dissolved CCs extracellularly and intracellularly. Furthermore, anchoring ß-CD onto the surface of ST-d-rHDL enhanced its cholesterol removal ability in RAW 264.7 cell-derived foam cells characterized by accelerated cholesterol efflux, reduced intracellular lipid deposition, and improved cell membrane fluidity/permeability. Finally, ßCD-ST-d-rHDL exerted efficient drug delivery and effective anti-inflammatory effects in macrophage/foam cells. Collectively, anchoring ß-CD onto the surface of ST-d-rHDL for selective CCs dissolution, accelerated cholesterol efflux, and improved drug delivery represents an effective strategy to enhance anti-inflammatory effects for the therapy of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , beta-Ciclodextrinas , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Aterosclerose/tratamento farmacológico , Colesterol/metabolismo , Células Espumosas/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipoproteínas HDL/química , Macrófagos , Sinvastatina/farmacologia , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...