Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(9): e2306876, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37899660

RESUMO

Nanorobots capable of active movement are an exciting technology for targeted therapeutic intervention. However, the extensive motion range and hindrance of the blood-brain barrier impeded their clinical translation in glioblastoma therapy. Here, a marsupial robotic system constructed by integrating chemical/magnetic hybrid nanorobots (child robots) with a miniature magnetic continuum robot (mother robot) for intracranial cross-scale targeting drug delivery is reported. For primary targeting on macroscale, the continuum robot enters the cranial cavity through a minimally invasive channel (e.g., Ommaya device) in the skull and transports the nanorobots to pathogenic regions. Upon circumventing the blood-brain barrier, the released nanorobots perform secondary targeting on microscale to further enhance the spatial resolution of drug delivery. In vitro experiments against primary glioblastoma cells derived from different patients are conducted for personalized treatment guidance. The operation feasibility within organisms is shown in ex vivo swine brain experiments. The biosafety of the treatment system is suggested in in vivo experiments. Owing to the hierarchical targeting method, the targeting rate, targeting accuracy, and treatment efficacy have improved greatly. The marsupial robotic system offers a novel intracranial local therapeutic strategy and constitutes a key milestone in the development of glioblastoma treatment platforms.


Assuntos
Glioblastoma , Marsupiais , Procedimentos Cirúrgicos Robóticos , Criança , Humanos , Animais , Suínos , Glioblastoma/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Crânio
2.
Clin Pharmacol Drug Dev ; 10(12): 1452-1459, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34410042

RESUMO

Insulin glargine (IGlar) and LY2963016 (LY IGlar) are long-acting insulin analogs with identical primary amino acid sequences. We conducted a randomized, open-label, 2-treatment, 2-period, crossover study in healthy Chinese subjects to evaluate the relative bioavailability of LY IGlar to IGlar and pharmacokinetic (PK) and pharmacodynamic (PD) characteristics of LY IGlar. Subjects (n = 58) were randomized to receive single subcutaneous doses (0.5 U/kg) of LY IGlar and IGlar with a ≥7-day washout period between study treatments. Serum was collected before and up to 24 hours after dosing to assess PK characteristics. PD characteristics were assessed by euglycemic clamp up to 24 hours after dosing. Linear mixed-effects models were used to fit the log-transformed primary PK (maximum observed concentration and area under the concentration-time curve from time 0 to 24 hours) and PD parameters (maximum glucose infusion rate and total amount of glucose infused during clamp period). The geometric least squares means ratios (90% confidence interval) of LY IGlar to IGlar for maximum observed concentration and area under the concentration-time curve from time 0 to 24 hours were 0.961 (0.887-1.04) and 0.941 (0.872-1.01), respectively. The geometric least squares means ratios (90% confidence interval) of LY IGlar to IGlar were 0.91 (0.85-0.98) for maximum glucose infusion rate and 0.89 (0.82-0.97) for total amount of glucose infused during clamp period. LY IGlar demonstrated similarity to IGlar in PK and PD characteristics following single-dose (0.5 U/kg) administration in healthy Chinese subjects.


Assuntos
Glucose , Hipoglicemiantes , Disponibilidade Biológica , Glicemia/metabolismo , China , Estudos Cross-Over , Técnica Clamp de Glucose , Humanos , Insulina Glargina
3.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673430

RESUMO

To discover new compounds with broad spectrum and high activity, we designed a series of novel benzamides containing 1,2,4-oxadiazole moiety by bioisosterism, and 28 benzamides derivatives with antifungal activity were synthesized. These compounds were evaluated against four fungi: Botrytis cinereal, FusaHum graminearum, Marssonina mali, and Thanatephorus cucumeris. The results indicated that most of the compounds displayed good fungicidal activities, especially against Botrytis cinereal. For example, 10a (84.4%), 10d (83.6%), 10e (83.3%), 10f (83.1%), 10i (83.3%), and 10l (83.6%) were better than pyraclostrobin (81.4%) at 100 mg/L. In addition, the acute toxicity of 10f to zebrafish embryo was 20.58 mg/L, which was classified as a low-toxicity compound.


Assuntos
Antifúngicos/farmacologia , Benzamidas/farmacologia , Oxidiazóis/farmacologia , Peixe-Zebra/microbiologia , Animais , Ascomicetos/efeitos dos fármacos , Basidiomycota/efeitos dos fármacos , Benzamidas/síntese química , Benzamidas/química , Benzamidas/toxicidade , Botrytis/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/microbiologia , Fusarium/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Oxidiazóis/síntese química , Oxidiazóis/química , Oxidiazóis/toxicidade , Peixe-Zebra/embriologia
4.
J Neurosci ; 41(11): 2406-2419, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33531416

RESUMO

Extinction learning suppresses conditioned reward responses and is thus fundamental to adapt to changing environmental demands and to control excessive reward seeking. The medial prefrontal cortex (mPFC) monitors and controls conditioned reward responses. Abrupt transitions in mPFC activity anticipate changes in conditioned responses to altered contingencies. It remains, however, unknown whether such transitions are driven by the extinction of old behavioral strategies or by the acquisition of new competing ones. Using in vivo multiple single-unit recordings of mPFC in male rats, we studied the relationship between single-unit and population dynamics during extinction learning, using alcohol as a positive reinforcer in an operant conditioning paradigm. To examine the fine temporal relation between neural activity and behavior, we developed a novel behavioral model that allowed us to identify the number, onset, and duration of extinction-learning episodes in the behavior of each animal. We found that single-unit responses to conditioned stimuli changed even under stable experimental conditions and behavior. However, when behavioral responses to task contingencies had to be updated, unit-specific modulations became coordinated across the whole population, pushing the network into a new stable attractor state. Thus, extinction learning is not associated with suppressed mPFC responses to conditioned stimuli, but is anticipated by single-unit coordination into population-wide transitions of the internal state of the animal.SIGNIFICANCE STATEMENT The ability to suppress conditioned behaviors when no longer beneficial is fundamental for the survival of any organism. While pharmacological and optogenetic interventions have shown a critical involvement of the mPFC in the suppression of conditioned responses, the neural dynamics underlying such a process are still largely unknown. Combining novel analysis tools to describe behavior, single-neuron response, and population activity, we found that widespread changes in neuronal firing temporally coordinate across the whole mPFC population in anticipation of behavioral extinction. This coordination leads to a global transition in the internal state of the network, driving extinction of conditioned behavior.


Assuntos
Comportamento Animal/fisiologia , Extinção Psicológica/fisiologia , Córtex Pré-Frontal/fisiologia , Recompensa , Animais , Condicionamento Operante , Aprendizagem/fisiologia , Masculino , Neurônios/fisiologia , Ratos , Ratos Wistar
5.
Molecules ; 25(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752024

RESUMO

To find pesticidal lead compounds with high activity, a series of novel benzamides substituted with pyridine-linked 1,2,4-oxadiazole were designed by bioisosterism, and synthesized easily via esterification, cyanation, cyclization and aminolysis reactions. The structures of the target compounds were confirmed by 1H-NMR, 13C-NMR and HRMS. The preliminary bioassay showed that most compounds had good larvicidal activities against mosquito larvae at 10 mg/L, especially compound 7a, with a larvicidal activity as high as 100%, and even at 1 mg/L was still 40%; at 50 mg/L, all the target compounds showed good fungicidal activities against the eight tested fungi. Moreover, compound 7h exhibited better inhibitory activity (90.5%) than fluxapyroxad (63.6%) against Botrytis cinereal. Therefore, this type of compound can be further studied.


Assuntos
Benzamidas/química , Inseticidas/síntese química , Oxidiazóis/química , Piridinas/química , Animais , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Botrytis/efeitos dos fármacos , Desenho de Fármacos , Inseticidas/química , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Mariposas/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Oxidiazóis/síntese química , Oxidiazóis/farmacologia , Relação Estrutura-Atividade
6.
Acta Pharmacol Sin ; 37(8): 1054-62, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27264315

RESUMO

AIM: The aim of this study was to examine the activation of neuronal Kv7/KCNQ channels by a novel modified Kv7 opener QO58-lysine and to test the anti-nociceptive effects of QO58-lysine on inflammatory pain in rodent models. METHODS: Assays including whole-cell patch clamp recordings, HPLC, and in vivo pain behavioral evaluations were employed. RESULTS: QO58-lysine caused instant activation of Kv7.2/7.3 currents, and increasing the dose of QO58-lysine resulted in a dose-dependent activation of Kv7.2/Kv7.3 currents with an EC50 of 1.2±0.2 µmol/L. QO58-lysine caused a leftward shift of the voltage-dependent activation of Kv7.2/Kv7.3 to a hyperpolarized potential at V1/2=-54.4±2.5 mV from V1/2=-26.0±0.6 mV. The half-life in plasma (t1/2) was derived as 2.9, 2.7, and 3.0 h for doses of 12.5, 25, and 50 mg/kg, respectively. The absolute bioavailabilities for the three doses (12.5, 25, and 50 mg/kg) of QO58-lysine (po) were determined as 13.7%, 24.3%, and 39.3%, respectively. QO58-lysine caused a concentration-dependent reduction in the licking times during phase II pain induced by the injection of formalin into the mouse hindpaw. In the Complete Freund's adjuvant (CFA)-induced inflammatory pain model in rats, oral or intraperitoneal administration of QO58-lysine resulted in a dose-dependent increase in the paw withdrawal threshold, and the anti-nociceptive effect on mechanical allodynia could be reversed by the channel-specific blocker XE991 (3 mg/kg). CONCLUSION: Taken together, our findings show that a modified QO58 compound (QO58-lysine) can specifically activate Kv7.2/7.3/M-channels. Oral or intraperitoneal administration of QO58-lysine, which has improved bioavailability and a half-life of approximately 3 h in plasma, can reverse inflammatory pain in rodent animal models.


Assuntos
Canais de Potássio KCNQ/agonistas , Lisina/farmacologia , Medição da Dor/efeitos dos fármacos , Animais , Antracenos/farmacologia , Disponibilidade Biológica , Carbamatos/farmacologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Lisina/antagonistas & inibidores , Lisina/farmacocinética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...