Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 671: 344-353, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38815371

RESUMO

In view of a catalyst layer (CL) with low-Pt causing higher local transport resistance of O2 (Rlocal), we propose a multi-study methodology that combines CO poisoning, the limiting current density method, and electrochemical impedance spectroscopy to reveal how real CL interfaces dominate Rlocal. Experimental results indicate that the ionomer is not evenly distributed on the catalyst surface, and the uniformity of ionomer distribution does not show a positive correlation with the ionomer content. When the ionomer coverage on the supported catalyst surface is below 20 %, the ECSA is only 10 m2·g-1, and the ionomer coverage on the supported catalyst surface reaches 60 %, the ECSA is close to 40 m2·g-1. The ECSA has a positive correlation with ionomer coverage. Because the ECSA is measured by CO poisoning, it can be inferred that the platinum contacted with ionomer can generate effective active sites. Furthermore, a more uniform distribution of ionomer can create additional proton transport channels and reduce the distance for oxygen transport from the catalyst layer bulk to the active sites. A higher ECSA and a shorter distance for oxygen transport will reduce the Rlocal, leading to better performance.

2.
Phys Chem Chem Phys ; 26(18): 13965-13972, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38669188

RESUMO

The decay of the T1 state to the ground state is an essential property of photosensitizers because it decides the lifetime of excited states and, thus, the time window for sensitization. The sulfur/selenium substitution of carbonyl groups can red-shift absorption spectra and enhance the triplet yield because of the large spin-orbit coupling, modifying nucleobases to potential photosensitizers for various applications. However, replacing sulfur with selenium will also cause a much shorter T1 lifetime. Experimental studies found that the triplet decay rate of 6-seleno guanine (6SeGua) is 835 times faster than that of 6-thio guanine (6tGua) in aqueous solution. In this work, we reveal the mechanism of the T1 decay difference between 6SeGua and 6tGua by computing the activation energy and spin-orbit coupling for rate calculation. The solvent effect of water is treated with explicit microsolvation and implicit solvent models. We find that the hydrogen bond between the sulfur atom of 6tGua and the water molecule can brake the triplet decay, which is weaker in 6SeGua. This difference is crucial to explain the relatively long T1 lifetime of 6tGua in an aqueous solution. This insight emphasizes the role of solvents in modulating the excited state dynamics and the efficiency of photosensitizers, particularly in aqueous environments.

3.
J Hazard Mater ; 467: 133663, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38325095

RESUMO

Incorporating spent coffee grounds into single-use drinking straws for enhanced biodegradability also raises safety concerns due to increased chemical complexity. Here, volatile organic compounds (VOCs) present in coffee ground straws (CGS), polylactic acid straws (PLAS), and polypropylene straws (PPS) were characterized using headspace - solid-phase microextraction and migration assays, by which 430 and 153 VOCs of 10 chemical categories were identified by gas chromatography - mass spectrometry, respectively. Further, the VOCs were assessed for potential genetic toxicity by quantitative structure-activity relationship profiling and estimated daily intake (EDI) calculation, revealing that the VOCs identified in the CGS generally triggered the most structural alerts of genetic toxicity, and the EDIs of 37.9% of which exceeded the threshold of 0.15 µg person-1 d-1, also outnumbering that of the PLAS and PPS. Finally, 14 VOCs were prioritized due to their definite hazards, and generally higher EDIs or detection frequencies in the CGS. Meanwhile, the probability of producing safer CGS was also illustrated. Moreover, it was uncovered by chemical space that the VOCs with higher risk potentials tended to gather in the region defined by the molecular descriptor related to electronegativity or octanol/water partition coefficient. Our results provided valuable references to improve the chemical safety of the CGS, to promote consumer health, and to advance the sustainable development of food contact materials.


Assuntos
Café , Compostos Orgânicos Voláteis , Humanos , Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Octanóis , Polipropilenos
4.
J Phys Chem A ; 128(4): 738-746, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236743

RESUMO

CO oxidation represents an important model reaction in the gas phase to provide a clear structure-reactivity relationship in related heterogeneous catalysis. Herein, in combination with mass spectrometry experiments and quantum-chemical calculations, we identified that the RhMn2O3- cluster cannot oxidize CO into gas-phase CO2 at room temperature, while the NO preadsorbed products RhMn2O3-[(NO)1,2] are highly reactive in CO oxidation. This discovery is helpful to get a fundamental understanding on the reaction behavior in real-world three-way catalytic conditions where different kinds of reactants coexist. Theoretical calculations were performed to rationalize the crucial roles of preadsorbed NO where the strongly attached NO on the Rh atom can greatly stabilize the products RhMn2O2-[(NO)1,2] during CO oxidation and at the same time works together with the Rh atom to store electrons that stay originally in the attached CO2- unit. The leading result is that the desorption of CO2, which is the rate-determining step of CO oxidation by RhMn2O3-, can be greatly facilitated on the reactions of RhMn2O3-[(NO)1,2] with CO.

5.
Front Chem ; 11: 1191669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37789964

RESUMO

To improve the quantitative detection efficiency of chemical analysis and reduce the detection cost, the sample pass rate was estimated and mathematical statistics were used to calculate the optimal group size (K opt) of the composite testing to save on the maximum workload. A quantitative composite testing model was developed based on chemical analysis measurement uncertainty. Using this model, the maximum allowable number of composited samples (K max) is first calculated using parameters of regulated limits (L), limit of quantification (LOQ), and method measured uncertainty (U rel) to ensure that the sensitivity of the composite testing can meet the limit requirements. Finally, the appropriate composite group size (K a) can be obtained by creating a balance between K opt, K max, and the practical information used for that particular test. Furthermore, based on a constructed model, a practical quantitative composite testing method of 3-10 samples was established for the routine detection of toy phthalates (PAEs). The experimental results showed that the quantitative limits of 7 PAEs were 9.1-41.8 mg/kg, the relative expansion uncertainties were 16.6%-23.2%, and the recovery rates were 91.0%-112.3%, with a relative deviation of less than 10%. All these meet international PAEs standards. Compared with the traditional individual and qualitative composite testing, this model will not decrease the detection sensitivity, but can save up to 17.9%-80.4% of the workload when it is employed in toy PAEs testing with the pass rate of 80%-99%. This quantitative composite testing method will be implemented in the coming revision of ISO 8124-6 toy PAEs standards.

6.
Angew Chem Int Ed Engl ; 62(35): e202309073, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37427886

RESUMO

Macroscopic compass-like magnetic alignment at low magnetic fields is natural for ferromagnetic materials but is seldomly observed in paramagnetic materials. Herein, we report a "paramagnetic compass" that magnetically aligns under ∼mT fields based on the single-crystalline framework constructed by lanthanide ions and organic ligands (Ln-MOF). The magnetic alignment is attributed to the Ln-MOF's strong macroscopic anisotropy, where the highly-ordered structure allows the Ln-ions' molecular anisotropy to be summed according to the crystal symmetry. In tetragonal Ln-MOFs, the alignment is either parallel or perpendicular to the field depending on the easiest axis of the molecular anisotropy. Reversible switching between the two alignments is realized upon the removal and re-adsorption of solvent molecules filled in the framework. When the crystal symmetry is lowered in monoclinic Ln-MOFs, the alignments become even inclined (47°-66°) to the field. These fascinating properties of Ln-MOFs would encourage further explorations of framework materials containing paramagnetic centers.

7.
J Phys Chem Lett ; 14(19): 4388-4393, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37140362

RESUMO

By using state-of-the-art mass spectrometry and guided by the newly discovered single-electron mechanism (SEM; e.g., Ti3+ + 2NO → Ti4+-O•- + N2O), we determined experimentally that the vanadium-aluminum oxide clusters V4-xAlxO10-x- (x = 1-3) can catalyze the reduction of NO by CO and substantiated theoretically that the SEM still prevails in driving the catalysis. This finding marks an important step in cluster science in which a noble metal had been demonstrated to be indispensable in NO activation mediated by heteronuclear metal clusters. The results provide new insights into the SEM in which active V-Al cooperative communication favors the transfer of an unpaired electron from the V atom to NO attached to the Al atom on which the reduction reaction actually takes place. This study provides a clear picture for improving our understanding of related heterogeneous catalysis, and the electron hopping behavior induced by NO adsorption could be a fundamental chemistry for driving NO reduction.

8.
Phys Chem Chem Phys ; 24(48): 29765-29771, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36458914

RESUMO

Identifying the structural configurations of precursors for CO dissociation is fundamentally interesting and industrially important in the fields of, e.g., Fischer-Tropsch synthesis. Herein, we demonstrated that CO could be dissociated on polynuclear vanadium nitride V4N5- clusters at room temperature, and a key intermediate, with CO in a N-assisted tilted bridge coordination where the C-O bond ruptures easily, was discovered. The reaction was characterized by mass spectrometry, photoelectron spectroscopy, and quantum-chemistry calculations, and the nature of the adsorbed CO on product V4N5CO- was further characterized by a collision-induced dissociation experiment. Theoretical analysis evidences that CO dissociation is predominantly governed by the low-coordinated V and N atoms on the (V3N4)VN- cluster and the V3N4 moiety resembles a support. This finding strongly suggests that a novel mode for facile CO dissociation was identified in a gas-phase cluster study.

9.
J Phys Chem A ; 126(32): 5294-5301, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35943908

RESUMO

The discovery of compounds containing transition metals with an unusual and well-established oxidation state is vital to enrich our horizon on formal oxidation state. Herein, benefiting from the study of the water-gas shift reaction (CO + H2O → CO2 + H2) mediated with the iridium-vanadium oxide cluster IrVO2-, the missing -II oxidation state of iridium was identified. The reactions were performed by using our newly developed double ion trap reactors that can spatially separate the addition of reactants and are characterized by mass spectrometry and quantum-chemical calculations. This finding makes an important step that all the proposed 13 oxidation states of iridium (+IX to -III) have been known. The iridium atom in the IrVO2- cluster features the Ir═V double bond and resembles chemically the coordinated oxygen atom. A reactivity study demonstrated that the flexible role switch of iridium between an oxygen-atom like (Ir-IIVO2-) and a transition-metal-atom like behavior (Ir+IIVO3-) in different species can drive the water-gas shift reaction in the gas phase under ambient conditions. This result parallels and well rationalizes the extraordinary reactivity of oxide-supported iridium single-atom catalysts in related condensed-phase reactions.

10.
J Phys Chem Lett ; 12(28): 6519-6525, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34240876

RESUMO

The generation and characterization of multiple metal-metal (M-M) bonds between early and late transition metals is vital to correlate the nature of multiple M-M bonds with the related reactivity in catalysis, while the examples with multiple M-M bonds have been rarely reported. Herein, we identified that the quadruple bonding interactions were formed in a gas-phase ion IrV+ with a dramatically short Ir-V bond. Oxidation of four CO molecules by IrVO4+ is a highly exothermic process driven by the generation of stable products IrV+ and CO2, and then IrV+ can be oxidized by N2O to regenerate IrVO4+. This finding overturns the general impression that vanadium oxide clusters are unwilling to oxidize multiple CO molecules because of the strong V-O bond and that at most two oxygen atoms can be supplied from a single V-containing cluster in CO oxidation. This study emphasizes the potential importance of heterobimetallic multiple M-M bonds in related heterogeneous catalysis.

11.
Chemphyschem ; 21(22): 2550-2556, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-32985065

RESUMO

Gas-phase studies on catalytic CO oxidation by O2 mediated with gold-containing heteronuclear metal oxide clusters are vital to obtain the structure-reactivity relationship of supported gold catalysts, while it is challenging to trigger the reactivity of clusters with closed-shell electronic structure in O2 activation. Herein, we identified that CO oxidation by O2 can be catalyzed by the AuTi2 O4-6- clusters, among which AuTi2 O4- with closed-shell electronic structure can effectively activate O2 . The reactions were characterized by mass spectrometry and quantum chemical calculations. Theoretical calculations showed that in the initial stage of O2 activation, the Ti2 O4 moiety in AuTi2 O4- contributes dominantly to activate O2 into superoxide (O2- ⋅) without participation of the Au atom. In subsequent steps, the intimate charge transfer interaction between Au and the Ti2 O4 moiety drives the direct dissociation of the O2- ⋅ unit.

12.
Int J Anal Chem ; 2020: 1975471, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292479

RESUMO

BACKGROUND: Organic tin compounds (OTCs), a group of high-risk hazardous substances, are highly concerned in safety regulation of consumer products especially for toys because they can cause serious damage to organs after prolonged or repeated exposure. Gastric juice migration is nowadays widely implemented to assess organic tin intake from toys or food-contact materials; however, the followed up detection method using sodium tetraethylborate [NaB(Et4)] as a derivatization agent may directly lead to false positive of monomethyltins (MMT). OBJECTIVE: In order to avoid the phenomena of false positive of MMT in the course of laboratory testing of toys, it is necessary and important to perform relative experimental and theoretical studies to reveal the cause of false positive of MMT. METHOD: With metal tin powder as a representative of inorganic tin which existed in real samples, it was treated with artificial gastric juice (0.07 mol/L·HCl), followed by ethyl derivatization using sodium tetraethylborate [NaB(Et)4] and then analyzed by gas chromatography-mass spectrometry (GC-MS) according to the procedure specified in the standard of EN 71-3:2013+A3:2018 issued by the European Committee for Standardization (CEN). RESULTS: Without any OTCs in the starting materials, MMT false positive can be reproduced by detecting 0.56 mg/L of triethylmethyltin (TEMT) together with approximately 1000 mg/L of tetraethyltin (TeET), which is similar to real samples. Further, it is demonstrated that the detected amount of TEMT is linearly related with the added amount of NaB(Et)4, and that the formation of TEMT (methyl derivative) is easier than TeET (ethyl derivative) even though the ethyl group is present in a larger amount than the methyl group. CONCLUSIONS: The phenomena of MMT false positive which occurred in the laboratory testing of toys is mainly because that TEMT is highly likely to be obtained from the reaction of inorganic tin and trace level of methylation agent impurities contained in the derivatization reagent-NaB(Et)4. To avoid MMT false positive, it is concluded that the maximum acceptable mole ratio of methylation agent impurities contained in NaB(Et)4 is approximately 0.028%. This research is helpful to be aware of methylation impurities and is favorable to avoid false judgment caused by MMT false positive in routine analysis of toys.

13.
Inorg Chem ; 59(10): 7012-7026, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32339459

RESUMO

In this study, zinc-gallium oxynitrides with a Zn:Ga mole ratio of 1:1 [(GaN)0.5(ZnO)0.5] were synthesized from a Zn/Ga/CO3 layered double hydroxide (LDH) precursor. The microstructure and photoactivity of the (GaN)0.5(ZnO)0.5 particles were tuned by adjusting the nitridation conditions of the LDH. It is revealed that the quantity of the LDH, or, equivalently, the partial pressure of the water during nitridation, plays a pivotal role in the defect structure of the obtained oxynitrides. A reduction in the quantity of the LDH precursor can effectively suppress the formation of defects including Ga(Zn)-O bonding, bulk anion vacancies, and surface-deposited Ga/ON···VGa complexes, leading to a better charge-separation efficiency for the photogenerated electron-hole pairs in the oxynitride. Furthermore, a suitable introduction of methane during nitridation would not only increase the crystallinity of the bulk materials but also enhance the density of the surface oxygen vacancy (VO), which would raise the charge-injection efficiency by working as an electron trap and a reaction site to form O2•-. O2•-, as well as photogenerated holes, have been proven to be the dominant active species for the photodegradation of phenol. 25CH4-ZnGaNO, with the lowest density of bulk defects and the highest density of surface VO, exhibited the best photoactivity under visible-light irradiation for the photodegradation of Rhodamine B and phenol. The obtained surface-VO-rich (GaN)0.5(ZnO)0.5 particles can be applied as a high-performance visible-light-driven photocatalyst in the photodegradation of organic pollutants.

14.
J Phys Chem Lett ; 10(24): 7850-7855, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31790248

RESUMO

Fundamental understanding regarding oxygen storage capacity involving how and why an active site can buffer a large number of oxygen atoms in redox processes is vital to the design of advanced oxygen storage materials, while it is challenging because of the complexity of heterogeneous catalysis. Herein, we identified that an eight-atom iridium-aluminum oxide cluster IrAlO6+ can transfer all the oxygen atoms to catalytically oxidize six CO molecules. This finding represents a breakthrough in cluster catalysis where at most three oxygen atoms from a heteronuclear metal oxide cluster can be catalytically involved in CO oxidation. We found that oxygen prefers to be stored on aluminum to form an O3-• radical in the energetically unfavorable IrAlO6+ isomer and generate the low-coordinated iridium that is pivotal to capturing CO and triggering the catalysis. The powerful electron cycling capability of iridium and the cooperative iridium-aluminum interplay are emphasized to drive the oxygen atom-transfer behavior.

15.
Se Pu ; 36(11): 1181-1188, 2018 Nov 01.
Artigo em Chinês | MEDLINE | ID: mdl-30378382

RESUMO

Based on migration procedures using simulated gastric juice specified in the EU toy Safety Standard EN 71-3:2013/A2:2017, a method was developed for the determination of monomethyltin (MMT) migration from toys by gas chromatography-mass spectrometry (GC-MS). Further, a reliable confirmation method for judgement of a false positive for MMT obtained by GC-MS, was established. After optimizing the migration conditions, derivatization steps and chromatographic parameters, the method yielded a linear range from 0.02 to 1.0 mg/L with a correlation coefficient (R2) of 0.9992. The limits of detection and quantification of the method were 0.11 and 0.32 mg/kg, respectively. The recoveries were 86.2%-104.2% under different spiked levels (0.5, 1.0 and 1.5 µg), and the relative standard deviations were 3.1%-8.2% (n=6). MMT migration ranging from 0.44 to 0.67 mg/kg was detected in the surface coating of tin-plating (Sn-Fe alloy) toy materials, which was subsequently confirmed to be false positive. Therefore, a novel confirmative approach using methanol or acetone as the migration solvent was proposed, aiming at verifying the false positive of MMT. The results showed that the previously positive MMT detected by GC-MS could no longer be detected when treated by these migration solvents.Hence, this approach can be used to confirm false positive detected for MMT after GC-MS detection.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Jogos e Brinquedos , Compostos de Estanho/análise , Metanol , Solventes
16.
J AOAC Int ; 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30205868

RESUMO

Background: Bath-type ultrasonic-assisted extraction (UAE) has been developed as one of the most important sample pretreatment methods, especially for batch-sample pretreatment. So far, however, requirements for the performance of bath-type UAE equipment have not been standardized, nor has a suitable evaluation method that can be used to judge the feasibility of ultrasonic equipment for extraction been presented in the available regulations or standards. Objective: A simple and efficient method that can be used to evaluate the performance of bath-type UAE equipment is necessary to be proposed and established. Methods: First, distribution of a sound field in ultrasonic equipment was measured by acoustimeter and the dyeing method, through which influencing factors including frequency, preheating time, and output power of the equipment, as well as the horizontal and vertical position for locating the sample in the equipment, were investigated, and optimized parameters for extraction were achieved. Then, through the aluminum foil lattice method, by calculating the perforated rate of the aluminum foil, cavitation intensity of the ultrasonic equipment can be quantitatively determined. Results: With the optimized working conditions and by selecting appropriate parameters for the aluminum foil, perforated holes formed on the foil displayed a good pattern. Further validation experiments indicated conformity between the established method and the actual extraction effect of the ultrasonic equipment, proposing a suitable requirement for the cavitation effect of the bath-type UAE equipment. Conclusions: The aluminum foil lattice method has been proved to be simple, convenient, inexpensive, and reliable for quickly evaluating the extraction performance of bath-type UAE equipment.

17.
Angew Chem Int Ed Engl ; 57(34): 10989-10993, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-29972286

RESUMO

The single copper atom doped clusters CuAl4 O7-9 - can catalyze CO oxidation by O2 . The CuAl4 O7-9 - clusters are the first group of experimentally identified noble-metal free single atom catalysts for such a prototypical reaction. The reactions were characterized by mass spectrometry and density functional theory calculations. The CuAl4 O9 CO- is much more reactive than CuAl4 O9 - in the reaction with CO to generate CO2 . One adsorbed CO is crucial to stabilize Cu of CuAl4 O9 - around +I oxidation state and promote the oxidation of another CO. The widely emphasized correlation between the catalytic reactivity of CO oxidation and Cu oxidation state can be understood at the strictly molecular level. The remarkable difference between Cu catalysis and noble-metal catalysis was discussed.

18.
Inorg Chem ; 57(15): 9412-9424, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30028597

RESUMO

Methane-based nitridation was employed to produce wurtzite zinc-gallium oxynitride (ZnGaNO) photocatalyst particles using Zn/Ga/CO3 layered double hydroxides (LDHs) as precursor. Introduction of methane to nitridation would promote the formation of Zn-O bonding and suppress shallow acceptor complexes such as V(Zn)-Ga(Zn) and Ga-Oi in ZnGaNO particles. On the other hand, high flow rate of methane would induce breaking of Ga-N bonding and enhance surface deposition of metallic Ga atoms. After loading with Rh and RuO2, ZnGaNO particles had free electron density in an order of S50 > S20 > S90 > S0, which correlated well with their photocatalytic performance upon visible-light irradiation. The best performance of the loaded S50 was ascribed to the relatively flat surface band bending of the particle. Methane-based nitridation of Zn/Ga/CO3 LDHs would provide a new route to tune the surface chemistry of ZnGaNO and enhance the photocatalytic performance to its full potential.

19.
J Chem Phys ; 144(24): 244304, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27369512

RESUMO

Singly deuterated silylene has been detected and characterized in the gas-phase using high-resolution, two-dimensional, optical spectroscopy. Rotationally resolved lines in the 00 (0)X̃(1)A(')→Ã(1)A(″) band are assigned to both c-type perpendicular transition and additional parallel, axis-switching induced bands. The extracted rotational constants were combined with those for SiH2 and SiD2 to determine an improved equilibrium bond length, rSiH, and bond angle, θ, of 1.5137 ± 0.0003 Å and 92.04° ± 0.05°, and 1.4853 ± 0.0005 Å and 122.48° ± 0.08° for the X̃(1)A(')0,0,0 and Ã(1)A(″)(0,0,0) state respectively. The dispersed fluorescence consists of a long progression in the Ã(1)A(″)(0,0,0)→X̃(1)A(')(0,ν2,0) emission which was analyzed to produce vibrational parameters. A strong quantum level dependence of the rotationally resolved radiative decay curves is analyzed.

20.
J Phys Chem A ; 120(22): 3843-8, 2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27184540

RESUMO

Cerium oxide cationic clusters (CeO2)1-3(+) were generated through laser ablation and then reacted with sulfur dioxide (SO2) at ambient conditions in an ion trap reactor and those reactions were studied and characterized by combining the art of time-of-flight mass spectrometry (TOF-MS) with density functional theory (DFT) calculations. Molecule association and oxygen atom transfer (OAT) were observed for the CeO2(+) and (CeO2)2,3(+) reaction systems, respectively. The mechanistic analysis indicates that the weak Ce-O bond strength associated with the oxygen release capacity of cerium oxide clusters is considered as the key factor to achieve the oxidation of SO2. To our best knowledge, this research should be the first example to identify the OAT reactivity of metal oxide cluster ions toward sulfur dioxide under thermal collision conditions, and a fundamental understanding of the elementary oxidation of SO2 to SO3 is provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...