Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 926: 172061, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38552973

RESUMO

China faces a serious challenge with water pollution posed by potentially toxic elements (PTEs). Comprehensive and reliable environmental risk assessment is paramount for precise pollution prevention and control. Previous studies generally focused on a single environmental compartment within small regions, and the uncertainty in risk calculation is not fully considered. This study revealed the current exposure status of 11 PTEs in surface water and sediment across China using previously reported concentration data in 301 well-screened articles. Ecological and human health risks were evaluated and the uncertainty related to calculation parameters and exposure dataset were quantified. PTEs of high concern were further identified. Results showed Mn and Zn had the highest concentration levels, while Hg and Cd had the lowest concentrations in both surface water and sediment. Risk assessment of individual PTE showed that high-risk PTEs varied by risk receptors and environmental compartments. Nationwide, the probability of aquatic organisms being affected by Mn, Zn, Cu, and As in surface water exceeded 10 %. In sediment, Cd and Hg exhibited high and considerable risk, respectively. As was identified as the major PTE threatening human health as its carcinogenic risk was 1.45 × 10-4 through direct ingestion. Combined risk assessment showed the PTE mixture in surface water and sediment posed medium and high ecological risk with the risk quotient and potential ecological risk index of 1.76 and 558.36, respectively. Adverse health effects through incidental ingestion and dermal contact during swimming were negligible. This study provides a nationwide risk assessment of PTEs in China's aquatic environment and the robustness is verified, which can serve as a practical basis for policymakers to guide the early warning and precise management of water pollution.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Humanos , Metais Pesados/análise , Monitoramento Ambiental/métodos , Água , Cádmio , Mercúrio/análise , Poluição da Água , China , Medição de Risco , Poluentes do Solo/análise
2.
Environ Pollut ; 323: 121297, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796665

RESUMO

The partitioning coefficient Kd for a specific compound and location is not only a key input parameter of fate and transport models, but also critical in estimating the safety environmental concentration threshold. In order to reduce the uncertainty caused by non-linear interactions among environmental factors, machine learning based models for predicting Kd were developed in this work based on literature datasets of nonionic pesticides including molecular descriptors, soil properties, and experimental settings. The equilibrium concentration (Ce) values were specifically included for the reason that a varied range of Kd corresponding to a given Ce occurred in a real environment. By transforming 466 isotherms reported in the literature, 2618 paired equilibrium concentrations of liquid-solid (Ce-Qe) data points were obtained. Results of SHapley Additive exPlanations revealed that soil organic carbon, Ce, and cavity formation were the most important. The distance-based applicability domain analysis was conducted for the 27 most frequently used pesticides with 15952 pieces of soil information from the HWSD-China dataset by setting three Ce scenarios (i.e., 10, 100, and 1000 µg L-1). It was revealed the groups of compounds showing log Kd < 0.06 and log Kd > 1.19 were composed mostly of those with log Kow of -0.800 and 5.50, respectively. When log Kd varied between 0.100 and 1.00, it was impacted by interactions among soil types, molecular descriptors, and Ce comprehensively, which accounted for 55% of the total 2618 calculations. It could be concluded that site-specific models developed in this work are necessary and practicable for the environmental risk assessment and management of nonionic organic compounds.


Assuntos
Praguicidas , Poluentes do Solo , Praguicidas/análise , Solo , Poluentes do Solo/análise , Carbono/análise , China
3.
J Environ Qual ; 52(1): 26-34, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36220139

RESUMO

Excessive Cd accumulation in rice grain has caused chronic Cd diseases in humans. In most crops, 100 times more Zn than Cd strongly inhibits Cd uptake and translocation. However, this response is not found for rice (Oryza sativa L.), which was found to have an unusual Cd uptake pattern compared with other crops, such as spinach (Spinacia oleracea L.). Moreover, studies on shared transporters between Zn and Cd using normal solution experiments with traditional high concentrations of metal ions may result in irrelevant interactions. Therefore, we developed ethyleneglycoltetraacetate-buffered nutrient solutions in this work. Rice and spinach seedlings were grown under calibrated low Cd2+ activity and low to phytotoxic Zn2+ activity levels while buffering other micronutrient cations at sufficient levels. Results showed that as rice grew with pZn2+  = 8.1-5.4, root Cd and shoot Ni decreased significantly and gradually. However, shoot Cd and Mn in rice decreased slightly with the increase of solution Zn2+ from deficiency to sufficiency and then increased at toxic Zn2+ solution (pZn2+  = 5.4). The shoot/root ratios of Cd in rice under toxic pZn2+ (5.6 and 5.4 pZn2+ activity) were significantly increased (p < .05). It could be concluded that rice absorption of Cd is not inhibited by co-contaminating (toxic) Zn. For spinach, with Zn varying from pZn2+  = 8.1-5.7, both shoot and root Cd substantially decreased, as did shoot Ni. This work revealed that, to understand food chain Cd risks, one needs to consider the inhibitory role of Zn in limiting Cd absorption in all crops studied except rice.


Assuntos
Oryza , Poluentes do Solo , Humanos , Zinco/análise , Cádmio/análise , Spinacia oleracea , Produtos Agrícolas , Íons , Poluentes do Solo/análise
4.
Ying Yong Sheng Tai Xue Bao ; 33(6): 1639-1651, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35729143

RESUMO

Ecological risk assessment of soil in contaminated sites provides the scientific basis for accurately developing soil quality standards, confirming remediation targets, and making safe use of contaminated soil. It thus is a critical mean to protect soil health and safety. "Weight-of-Evidence" (WoE) has been widely used in ecological risk assessment due to its systematic, integrated and scientific properties. However, most current WoE approaches are poor in objectivity and comparability because they rely too much on expertise scoring in weighing and the difficulty to collect complete evidence bodies with quantitative and comprehensive information. Focusing on those issues above, we developed an improved framework of WoE approach for ecological risk assessment of contaminated site soil based on the "Four-Step" framework of EPA coupled with the concept of hierarchy. Assessment methods and procedures for each tier were unified. Weights were weighed quantitatively through multiple criteria decision analysis. The relative independence among bodies of evidence was assured by the pre-establishment of hierarchy. The "site specific" was stressed based on matrix trails and field investigation. Finally, a case study in an electroplating site in Jingjiang was conducted to verify the approach. Results of the case study suggested that the approach was practical and that the assessment results were objective, scientific, and accurate.


Assuntos
Galvanoplastia , Poluentes do Solo , Poluição Ambiental , Medição de Risco/métodos , Solo , Poluentes do Solo/análise
5.
J Environ Qual ; 51(5): 890-898, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35439325

RESUMO

Health risks caused by food containing Cd is a concern worldwide. Interaction between Mn and Cd has been widely studied in normal hydroponic solution with high ion activities (e.g., the study on sharing of transporter Natural Resistance-Associated Macrophage Protein 5 between Mn and Cd in rice [Oryza sativa L.]). However, interaction of Mn and Cd in crops like rice and spinach (Spinacia oleracea L.) at field ion activity level is still unknown. Thus, an ethyleneglycoltetraacetate-buffered solution experiment was conducted to explore the effect of Mn on the uptake and accumulation of Cd and other mineral elements in rice and spinach. In rice, antagonism of Mn and Cd was only observed in roots at deficient and toxic levels of external Mn2+ . Compared with those at Mn2+ sufficiency (pMn2+ 6.7-5.3), average root Cd levels were elevated significantly by 1.85-3.05 times at Mn2+ deficiency (pMn2+ 8.2) but decreased by 1.57-2.59 times at Mn2+ toxicity (pMn2+ 4.8). The antagonism between Mn and K/Mg in rice shoots might be caused by their common role in physiological processes in plants. Antagonism of Mn/Ni in spinach in this work was consistent with their shared transporters in dicots. Results about the antagonism of root Cd/Mn at Mn2+ deficiency suggest that sufficiently available Mn2+ is significant to reduce Cd uptake in rice under field levels of ion activity, but it was not for spinach because the change of tissue Cd was insignificant with the increase of Mn2+ activity from deficiency to toxicity.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Poluentes do Solo/análise , Spinacia oleracea/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...