Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 32(5): 710-726.e10, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38657607

RESUMO

Fusarium head blight (FHB) is a devastating wheat disease. Fhb1, the most widely applied genetic locus for FHB resistance, is conferred by TaHRC of an unknown mode of action. Here, we show that TaHRC alleles distinctly drive liquid-liquid phase separation (LLPS) within a proteinaceous complex, determining FHB susceptibility or resistance. TaHRC-S (susceptible) exhibits stronger LLPS ability than TaHRC-R (resistant), and this distinction is further intensified by fungal mycotoxin deoxynivalenol, leading to opposing FHB symptoms. TaHRC recruits a protein class with intrinsic LLPS potentials, referred to as an "HRC-containing hub." TaHRC-S drives condensation of hub components, while TaHRC-R comparatively suppresses hub condensate formation. The function of TaSR45a splicing factor, a hub member, depends on TaHRC-driven condensate state, which in turn differentially directs alternative splicing, switching between susceptibility and resistance to wheat FHB. These findings reveal a mechanism for FHB spread within a spike and shed light on the roles of complex condensates in controlling plant disease.


Assuntos
Resistência à Doença , Fusarium , Doenças das Plantas , Proteínas de Plantas , Triticum , Triticum/microbiologia , Triticum/genética , Triticum/metabolismo , Fusarium/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tricotecenos/metabolismo , Alelos , Processamento Alternativo
2.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612594

RESUMO

Members of the abscisic acid (ABA)-responsive element (ABRE) binding factor (ABF) and ABA-responsive element binding protein (AREB) families play essential roles in the regulation of ABA signaling pathway activity and shape the ability of plants to adapt to a range of stressful environmental conditions. To date, however, systematic genome-wide analyses focused on the ABF/AREB gene family in wheat are lacking. Here, we identified 35 ABF/AREB genes in the wheat genome, designated TaABF1-TaABF35 according to their chromosomal distribution. These genes were further classified, based on their phylogenetic relationships, into three groups (A-C), with the TaABF genes in a given group exhibiting similar motifs and similar numbers of introns/exons. Cis-element analyses of the promoter regions upstream of these TaABFs revealed large numbers of ABREs, with the other predominant elements that were identified differing across these three groups. Patterns of TaABF gene expansion were primarily characterized by allopolyploidization and fragment duplication, with purifying selection having played a significant role in the evolution of this gene family. Further expression profiling indicated that the majority of the TaABF genes from groups A and B were highly expressed in various tissues and upregulated following abiotic stress exposure such as drought, low temperature, low nitrogen, etc., while some of the TaABF genes in group C were specifically expressed in grain tissues. Regulatory network analyses revealed that four of the group A TaABFs (TaABF2, TaABF7, TaABF13, and TaABF19) were centrally located in protein-protein interaction networks, with 13 of these TaABF genes being regulated by 11 known miRNAs, which play important roles in abiotic stress resistance such as drought and salt stress. The two primary upstream transcription factor types found to regulate TaABF gene expression were BBR/BPC and ERF, which have previously been reported to be important in the context of plant abiotic stress responses. Together, these results offer insight into the role that the ABF/AREB genes play in the responses of wheat to abiotic stressors, providing a robust foundation for future functional studies of these genes.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Filogenia , Regulação da Expressão Gênica , Fatores Estimuladores Upstream
3.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396749

RESUMO

Tube-like outgrowths from root epidermal cells, known as root hairs, enhance water and nutrient absorption, facilitate microbial interactions, and contribute to plant anchorage by expanding the root surface area. Genetically regulated and strongly influenced by environmental conditions, longer root hairs generally enhance water and nutrient absorption, correlating with increased stress resistance. Wheat, a globally predominant crop pivotal for human nutrition, necessitates the identification of long root hair genotypes and their regulatory genes to enhance nutrient capture and yield potential. This study focused on 261 wheat samples of diverse genotypes during germination, revealing noticeable disparities in the length of the root hair among the genotypes. Notably, two long root hair genotypes (W106 and W136) and two short root hair genotypes (W90 and W100) were identified. Transcriptome sequencing resulted in the development of 12 root cDNA libraries, unveiling 1180 shared differentially expressed genes (DEGs). Further analyses, including GO function annotation, KEGG enrichment, MapMan metabolic pathway analysis, and protein-protein interaction (PPI) network prediction, underscored the upregulation of root hair length regulatory genes in the long root hair genotypes. These included genes are associated with GA and BA hormone signaling pathways, FRS/FRF and bHLH transcription factors, phenylpropanoid, lignin, lignan secondary metabolic pathways, the peroxidase gene for maintaining ROS steady state, and the ankyrin gene with diverse biological functions. This study contributes valuable insights into modulating the length of wheat root hair and identifies candidate genes for the genetic improvement of wheat root traits.


Assuntos
Transcriptoma , Triticum , Humanos , Perfilação da Expressão Gênica , Fenótipo , Água , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética
4.
Front Plant Sci ; 15: 1347842, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328701

RESUMO

FHY3 and its homologous protein FAR1 are the founding members of FRS family. They exhibited diverse and powerful physiological functions during evolution, and participated in the response to multiple abiotic stresses. FRF genes are considered to be truncated FRS family proteins. They competed with FRS for DNA binding sites to regulate gene expression. However, only few studies are available on FRF genes in plants participating in the regulation of abiotic stress. With wide adaptability and high stress-resistance, barley is an excellent candidate for the identification of stress-resistance-related genes. In this study, 22 HvFRFs were detected in barley using bioinformatic analysis from whole genome. According to evolution and conserved motif analysis, the 22 HvFRFs could be divided into subfamilies I and II. Most promoters of subfamily I members contained abscisic acid and methyl jasmonate response elements; however, a large number promoters of subfamily II contained gibberellin and salicylic acid response elements. HvFRF9, one of the members of subfamily II, exhibited a expression advantage in different tissues, and it was most significantly upregulated under drought stress. In-situ PCR revealed that HvFRF9 is mainly expressed in the root epidermal cells, as well as xylem and phloem of roots and leaves, indicating that HvFRF9 may be related to absorption and transportation of water and nutrients. The results of subcellular localization indicated that HvFRF9 was mainly expressed in the nuclei of tobacco epidermal cells and protoplast of arabidopsis. Further, transgenic arabidopsis plants with HvFRF9 overexpression were generated to verify the role of HvFRF9 in drought resistance. Under drought stress, leaf chlorosis and wilting, MDA and O2 - contents were significantly lower, meanwhile, fresh weight, root length, PRO content, and SOD, CAT and POD activities were significantly higher in HvFRF9-overexpressing arabidopsis plants than in wild-type plants. Therefore, overexpression of HvFRF9 could significantly enhance the drought resistance in arabidopsis. These results suggested that HvFRF9 may play a key role in drought resistance in barley by increasing the absorption and transportation of water and the activity of antioxidant enzymes. This study provided a theoretical basis for drought resistance in barley and provided new genes for drought resistance breeding.

5.
Plant Genome ; 17(1): e20402, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37957947

RESUMO

Temperatures below or above optimal growth conditions are among the major stressors affecting productivity, end-use quality, and distribution of key staple crops including rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays L.). Among temperature stresses, cold stress induces cellular changes that cause oxidative stress and slowdown metabolism, limit growth, and ultimately reduce crop productivity. Perception of cold stress by plant cells leads to the activation of cold-responsive transcription factors and downstream genes, which ultimately impart cold tolerance. The response triggered in crops to cold stress includes gene expression/suppression, the accumulation of sugars upon chilling, and signaling molecules, among others. Much of the information on the effects of cold stress on perception, signal transduction, gene expression, and plant metabolism are available in the model plant Arabidopsis but somewhat lacking in major crops. Hence, a complete understanding of the molecular mechanisms by which staple crops respond to cold stress remain largely unknown. Here, we make an effort to elaborate on the molecular mechanisms employed in response to low-temperature stress. We summarize the effects of cold stress on the growth and development of these crops, the mechanism of cold perception, and the role of various sensors and transducers in cold signaling. We discuss the progress in cold tolerance research at the genome, transcriptome, proteome, and metabolome levels and highlight how these findings provide opportunities for designing cold-tolerant crops for the future.


Assuntos
Proteínas de Plantas , Fatores de Transcrição , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Produtos Agrícolas/genética , Temperatura Baixa , Resposta ao Choque Frio
6.
Small ; 20(11): e2307396, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37888791

RESUMO

Rechargeable magnesium batteries (RMBs) are considered as one of the most promising candidates for next-generation batteries. However, the popularization of RMBs is seriously plagued due to the lack of suitable non-nucleophilic electrolytes and the passivation of Mg anode. Herein, a novel non-nucleophilic electrolyte is developed by introducing (s)-1-methoxy-2-propylamine (M4) into themagnesium aluminum chloride complex (MACC)-like electrolyte. The as-synthesizes Mg(AlCl4 )2 -IL-DME-M4 electrolyte enables robust reversible cycling of Mg plating/stripping with low overpotential, high anodic stability, and ionic conductivity (8.56 mS cm-1 ). These features should be mainly attributed to the in situ formation of an MgF2 containing Mg2+ -conducting interphase, which dramatically suppresses the passivation and parasitic reaction of Mg anode with electrolyte. Remarkably, the Mg/S batteries assemble with as-synthesize electrolyte and a new type MoS2 @CMK/S cathode deliver unprecedented electrochemical performance. Specifically, the Mg/S battery exhibited the highest reversible capacity up to 1210 mAh g-1 at 0.1 C, excellent rate capability and satisfactory long-term cycling stability with a reversible capacity of 370 mAh g-1 (coulombic efficiency of ≈100%) at 1.0 C for 600 cycles. The study findings provide a novel strategy and inspiration for designing efficient non-nucleophilic Mg electrolyte and suitable sulfur-host materials for practical Mg/S battery applications.

7.
Front Plant Sci ; 14: 1171839, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583591

RESUMO

Polyphenol oxidase (PPO) activity is a major cause of the undesirable brown color of wheat-based products. Ppo1, a major gene for PPO activity, was cloned based on sequence homology in previous studies; however, its function and regulation mechanism remain unclear. In this study, the function and genetic regulation of Ppo1 were analyzed using RNA interference (RNAi) and Targeting Induced Local Lesions IN Genomes (TILLING) technology, and superior mutants were identified. Compared with the control, the level of Ppo1 transcript in RNAi transgenic lines was drastically decreased by 15.5%-60.9% during grain development, and PPO activity was significantly reduced by 12.9%-20.4%, confirming the role of Ppo1 in PPO activity. Thirty-two Ppo1 mutants were identified in the ethyl methanesulfonate (EMS)-mutagenized population, including eight missense mutations, 16 synonymous mutations, and eight intron mutations. The expression of Ppo1 was reduced significantly by 6.7%-37.1% and 10.1%-54.4% in mutants M092141 (G311S) and M091098 (G299R), respectively, in which PPO activity was decreased by 29.7% and 28.8%, respectively, indicating that mutation sites of two mutants have important effects on PPO1 function. Sequence and structure analysis revealed that the two sites were highly conserved among 74 plant species, where the frequency of glycine was 94.6% and 100%, respectively, and adjacent to the entrance of the hydrophobic pocket of the active site. The M092141 and M091098 mutants can be used as important germplasms to develop wheat cultivars with low grain PPO activity. This study provided important insights into the molecular mechanism of Ppo1 and the genetic improvement of wheat PPO activity.

8.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298204

RESUMO

Due to rising living standards, it is important to improve wheat's quality traits by adjusting its storage protein genes. The introduction or locus deletion of high molecular weight subunits could provide new options for improving wheat quality and food safety. In this study, digenic and trigenic wheat lines were identified, in which the 1Dx5+1Dy10 subunit, and NGli-D2 and Sec-1s genes were successfully polymerized to determine the role of gene pyramiding in wheat quality. In addition, the effects of ω-rye alkaloids during 1BL/1RS translocation on quality were eliminated by introducing and utilizing 1Dx5+1Dy10 subunits through gene pyramiding. Additionally, the content of alcohol-soluble proteins was reduced, the Glu/Gli ratio was increased and high-quality wheat lines were obtained. The sedimentation values and mixograph parameters of the gene pyramids under different genetic backgrounds were significantly increased. Among all the pyramids, the trigenic lines in Zhengmai 7698, which was the genetic background, had the highest sedimentation value. The mixograph parameters of the midline peak time (MPT), midline peak value (MPV), midline peak width (MPW), curve tail value (CTV), curve tail width (CTW), midline value at 8 min (MTxV), midline width at 8 min (MTxW) and midline integral at 8 min (MTxI) of the gene pyramids were markedly enhanced, especially in the trigenic lines. Therefore, the pyramiding processes of the 1Dx5+1Dy10, Sec-1S and NGli-D2 genes improved dough elasticity. The overall protein composition of the modified gene pyramids was better than that of the wild type. The Glu/Gli ratios of the type I digenic line and trigenic lines containing the NGli-D2 locus were higher than that of the type II digenic line without the NGli-D2 locus. The trigenic lines with Hengguan 35 as the genetic background had the highest Glu/Gli ratio among the specimens. The unextractable polymeric protein (UPP%) and Glu/Gli ratios of the type II digenic line and trigenic lines were significantly higher than those of the wild type. The UPP% of the type II digenic line was higher than that of the trigenic lines, while the Glu/Gli ratio was slightly lower than that of the trigenic lines. In addition, the celiac disease (CD) epitopes' level of the gene pyramids significantly decreased. The strategy and information reported in this study could be very useful for improving wheat processing quality and reducing wheat CD epitopes.


Assuntos
Doença Celíaca , Triticum , Triticum/genética , Triticum/metabolismo , Doença Celíaca/genética , Translocação Genética , Fenótipo , Epitopos/metabolismo , Glutens/química
9.
Theor Appl Genet ; 136(6): 138, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37233825

RESUMO

KEY MESSAGE: The vacuolar processing enzyme gene TaVPE3cB is identified as a candidate gene for a QTL of wheat pith-thickness on chromosome 3B by BSR-seq and differential expression analyses. The high pith-thickness (PT) of the wheat stem could greatly enhance stem mechanical strength, especially the basal internodes which support the heavier upper part, such as upper stems, leaves and spikes. A QTL for PT in wheat was previously discovered on 3BL in a double haploid population of 'Westonia' × 'Kauz'. Here, a bulked segregant RNA-seq analysis was applied to identify candidate genes and develop associated SNP markers for PT. In this study, we aimed at screening differentially expressed genes (DEGs) and SNPs in the 3BL QTL interval. Sixteen DEGs were obtained based on BSR-seq and differential expression analyses. Twenty-four high-probability SNPs in eight genes were identified by comparing the allelic polymorphism in mRNA sequences between the high PT and low PT samples. Among them, six genes were confirmed to be associated with PT by qRT-PCR and sequencing. A putative vacuolar processing enzyme gene TaVPE3cB was screened out as a potential PT candidate gene in Australian wheat 'Westonia'. A robust SNP marker associated with TaVPE3cB was developed, which can assist in the introgression of TaVPE3cB.b in wheat breeding programs. In addition, we also discussed the function of other DEGs which may be related to pith development and programmed cell death (PCD). A five-level hierarchical regulation mechanism of stem pith PCD in wheat was proposed.


Assuntos
Melhoramento Vegetal , Triticum , Mapeamento Cromossômico , Triticum/genética , Triticum/metabolismo , Austrália , Polimorfismo de Nucleotídeo Único
10.
Plants (Basel) ; 12(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37176811

RESUMO

To improve the yield and quality of wheat is of great importance for food security worldwide. One of the most effective and significant approaches to achieve this goal is to enhance the nitrogen use efficiency (NUE) in wheat. In this review, a comprehensive understanding of the factors involved in the process of the wheat nitrogen uptake, assimilation and remobilization of nitrogen in wheat were introduced. An appropriate definition of NUE is vital prior to its precise evaluation for the following gene identification and breeding process. Apart from grain yield (GY) and grain protein content (GPC), the commonly recognized major indicators of NUE, grain protein deviation (GPD) could also be considered as a potential trait for NUE evaluation. As a complex quantitative trait, NUE is affected by transporter proteins, kinases, transcription factors (TFs) and micro RNAs (miRNAs), which participate in the nitrogen uptake process, as well as key enzymes, circadian regulators, cross-talks between carbon metabolism, which are associated with nitrogen assimilation and remobilization. A series of quantitative genetic loci (QTLs) and linking markers were compiled in the hope to help discover more efficient and useful genetic resources for breeding program. For future NUE improvement, an exploration for other criteria during selection process that incorporates morphological, physiological and biochemical traits is needed. Applying new technologies from phenomics will allow high-throughput NUE phenotyping and accelerate the breeding process. A combination of multi-omics techniques and the previously verified QTLs and molecular markers will facilitate the NUE QTL-mapping and novel gene identification.

11.
Development ; 150(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37039060

RESUMO

The utilization of reduced plant height genes Rht-B1b and Rht-D1b, encoding homeologous DELLA proteins, led to the wheat Green Revolution (GR). However, the specific functions of GR genes in yield determination and the underlying regulatory mechanisms remained unknown. Here, we validated that Rht-B1b, as a representative of GR genes, affects plant architecture and yield component traits. Upregulation of Rht-B1b reduced plant height, leaf size and grain weight, but increased tiller number, tiller angle, spike number per unit area, and grain number per spike. Dynamic investigations showed that Rht-B1b increased spike number by improving tillering initiation rather than outgrowth, and enhanced grain number by promoting floret fertility. Rht-B1b reduced plant height by reducing cell size in the internodes, and reduced grain size or weight by decreasing cell number in the pericarp. Transcriptome analyses uncovered that Rht-B1b regulates many homologs of previously reported key genes for given traits and several putative integrators for different traits. These findings specify the pleiotropic functions of Rht-B1b in improving yield and provide new insights into the regulatory mechanisms underlying plant morphogenesis and yield formation.


Assuntos
Genes de Plantas , Triticum , Alelos , Fenótipo , Grão Comestível/metabolismo , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047154

RESUMO

Transcription factors (TFs) are important regulators of numerous gene expressions due to their ability to recognize and combine cis-elements in the promoters of target genes. The INDETERMINATE DOMAIN (IDD) gene family belongs to a subfamily of C2H2 zinc finger proteins and has been identified only in terrestrial plants. Nevertheless, little study has been reported concerning the genome-wide analysis of the IDD gene family in maize. In total, 22 ZmIDD genes were identified, which can be distributed on 8 chromosomes in maize. On the basis of evolutionary relationships and conserved motif analysis, ZmIDDs were categorized into three clades (1, 2, and 3), each owning 4, 6, and 12 genes, respectively. We analyzed the characteristics of gene structure and found that 3 of the 22 ZmIDD genes do not contain an intron. Cis-element analysis of the ZmIDD promoter showed that most ZmIDD genes possessed at least one ABRE or MBS cis-element, and some ZmIDD genes owned the AuxRR-core, TCA-element, TC-rich repeats, and LTR cis-element. The Ka:Ks ratio of eight segmentally duplicated gene pairs demonstrated that the ZmIDD gene families had undergone a purifying selection. Then, the transcription levels of ZmIDDs were analyzed, and they showed great differences in diverse tissues as well as abiotic stresses. Furthermore, regulatory networks were constructed through the prediction of ZmIDD-targeted genes and miRNAs, which can inhibit the transcription of ZmIDDs. In total, 6 ZmIDDs and 22 miRNAs were discovered, which can target 180 genes and depress the expression of 9 ZmIDDs, respectively. Taken together, the results give us valuable information for studying the function of ZmIDDs involved in plant development and climate resilience in maize.


Assuntos
Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Regiões Promotoras Genéticas , Estresse Fisiológico/genética , Filogenia , Regulação da Expressão Gênica de Plantas , Família Multigênica , Genoma de Planta
13.
Front Plant Sci ; 14: 1147019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938052

RESUMO

Wheat coleoptile is a sheath-like structure that helps to deliver the first leaf from embryo to the soil surface. Here, a RIL population consisting of 245 lines derived from Zhou 8425B × Chinese Spring cross was genotyped by the high-density Illumina iSelect 90K assay for coleoptile length (CL) QTL mapping. Three QTL for CL were mapped on chromosomes 2BL, 4BS and 4DS. Of them, two major QTL QCL.qau-4BS and QCL.qau-4DS were detected, which could explain 9.1%-22.2% of the phenotypic variances across environments on Rht-B1 and Rht-D1 loci, respectively. Several studies have reported that Rht-B1b may reduce the length of wheat CL but no study has been carried out at molecular level. In order to verify that the Rht-B1 gene is the functional gene for the 4B QTL, an overexpression line Rht-B1b-OE and a CRISPR/SpCas9 line Rht-B1b-KO were studied. The results showed that Rht-B1b overexpression could reduce the CL, while loss-of-function of Rht-B1b would increase the CL relative to that of the null transgenic plants (TNL). To dissect the underlying regulatory mechanism of Rht-B1b on CL, comparative RNA-Seq was conducted between Rht-B1b-OE and TNL. Transcriptome profiles revealed a few key pathways involving the function of Rht-B1b in coleoptile development, including phytohormones, circadian rhythm and starch and sucrose metabolism. Our findings may facilitate wheat breeding for longer coleoptiles to improve seedling early vigor for better penetration through the soil crust in arid regions.

14.
Foods ; 12(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36765961

RESUMO

Chinese steamed bread (CSB) is a main staple food in China, accounting for 40% of wheat flour usage in China. Due to its health benefits, CSB is gaining popularity across the world. In this review, the effects of gluten proteins (particularly glutenins and gliadins) on the quality of CSB are summarized from the literature. Requirements of appropriate rheological parameters in different studies are compared and discussed. Along with the increasing demand for frozen storage food, there are obvious increases in the research on the dynamics of gluten proteins in frozen dough. This review also summarizes the factors influencing the deterioration of CSB dough quality during frozen storage as well as effective measures to mitigate the negative effects.

15.
Foods ; 12(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36673453

RESUMO

The processing quality of wheat is affected by seed storage substances, such as protein and starch. High-molecular-weight glutenin subunits (HMW-GSs) are the major components of wheat seed storage proteins (SSPs); they are also key determinators of wheat end-use quality. However, the effects of HMW-GSs absence on the expression of other storage substances and the regulation mechanism of HMW-GSs are still limited. Previously, a wheat transgenic line LH-11 with complete deletions of HMW-GSs was obtained through introducing an exogenous gene Glu-1Ebx to the wild-type cultivar Bobwhite by transgenic approach. In this study, comparative seed transcriptomics and proteomics of transgenic and non-transgenic lines at different seed developmental stages were carried out to explore the changes in genes and proteins and the underlying regulatory mechanism. Results revealed that a number of genes, including genes related to SSPs, carbohydrates metabolism, amino acids metabolism, transcription, translation, and protein process were differentially enriched. Seed storage proteins displayed differential expression patterns between the transgenic and non-transgenic line, a major rise in the expression levels of gliadins were observed at 21 and 28 days post anthesis (DPA) in the transgenic line. Changes in expressions of low-molecular-weight glutenins (LMW-GSs), avenin-like proteins (ALPs), lipid transfer proteins (LTPs), and protease inhibitors (PIs) were also observed. In addition, genes related to carbohydrate metabolism were differentially expressed, which probably leads to a difference in starch component and deposition. A list of gene categories participating in the accumulation of SSPs was proposed according to the transcriptome and proteome data. Six genes from the MYB and eight genes from the NAC transcription families are likely important regulators of HMW-GSs accumulation. This study will provide data support for understanding the regulatory network of wheat storage substances. The screened candidate genes can lay a foundation for further research on the regulation mechanism of HMW-GSs.

16.
Plants (Basel) ; 13(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38202324

RESUMO

Phenotypic plasticity is the ability of an individual genotype to express phenotype variably in different environments. This study investigated the plasticity of yield-related traits of bread wheat by utilising 225 doubled haploid (DH) lines developed from cv. Westonia and cv. Kauz, through two field trials in Western Australia. Plasticity was quantified via two previously published methods: responsiveness to varying ecological conditions and slopes of reaction norms. The spikelets/spike was the most plastic trait, with an overall plasticity of 1.62. The least plastic trait was grain protein content, with an overall plasticity of 0.79. The trait hierarchy based on phenotypic plasticity was spikelets/spike > thousand kernel weight > seed number > seed length > grain yield > grain protein content. An increase in yield plasticity of 0.1 was associated with an increase in maximum yield of 4.45 kg ha-1. The plasticity of seed number and grain protein content were significantly associated with yield plasticity. The maximal yield was positively associated with spikelets/spike and grain yield, whereas it negatively associated with grain protein content. In contrast, the minimal yield was found to be negatively related to the plasticity of spikelets/spike and the plasticity of grain yield, whereas it was not related to grain protein content plasticity. Seed number and seed length exhibited plastic responses at the higher fertilisation state while remaining relatively stable at the lower fertilisation state for the wheat DH population. The finding of the current study will play a key role in wheat improvement under the changing climate. Seed length and seed number should be the breeding target for achieving stable yield in adverse environmental conditions.

17.
Plants (Basel) ; 13(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38202333

RESUMO

The current study focuses on identifying the candidate genes of a grain yield QTL from a double haploid population, Westonia × Kauz. The QTL region spans 20 Mbp on the IWGSC whole-genome sequence flank with 90K SNP markers. The IWGSC gene annotation revealed 16 high-confidence genes and 41 low-confidence genes. Bioinformatic approaches, including functional gene annotation, ontology investigation, pathway exploration, and gene network study using publicly available gene expression data, enabled the short-listing of four genes for further confirmation. Complete sequencing of those four genes demonstrated that only two genes are polymorphic between the parental cultivars, which are the ferredoxin-like protein gene and the tetratricopeptide-repeat (TPR) protein gene. The two genes were selected for downstream investigation. Two SNP variations were observed in the exon for both genes, with one SNP resulting in changes in amino acid sequence. qPCR-based gene expression showed that both genes were highly expressed in the high-yielding double haploid lines along with the parental cultivar Westonia. In contrast, their expression was significantly lower in the low-yielding lines in the other parent. It can be concluded that these two genes are the contributing genes to the grain yield QTL.

18.
ACS Appl Mater Interfaces ; 14(39): 44832-44840, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36153950

RESUMO

Flexible conductive polymer composite (CPC) fibers that show large changes in resistance with deformation have recently gained much attention as strain-sensing components for future wearable electronics. However, the electrical resistance of these materials decays with time during dynamic cyclic loading, a deformation performed to simulate their real application as strain sensors. Despite the extensive research on CPC fibers, the mechanism leading to this decay in the electromechanical response under repetitive cycles remains unreported. Herein, this behavior is investigated using fiber-based strain sensors wet spun from thermoplastic polyurethane (TPU) consisting of a carbonaceous hybrid conductive filler system of carbon black (CB) and carbon nanotubes (CNTs). We found electrical viscosity to predict the observed electromechanical resistance decay. This implies that cycling these materials enables the relaxation of both the polymer chains and the conductive network. In addition, the resulting piezoresistive fibers are sensitive to deformation in the region of low strain (gauge factor of 6.0 within 3.0% strain), remain conductive under 280.5% deformation, and are stable for more than 2000 cycles. Finally, we demonstrate the potential of TPU/CB-CNT fibers as strain sensors for monitoring human motion.

19.
Sci China Life Sci ; 65(9): 1718-1775, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36018491

RESUMO

Bread wheat (Triticum aestivum L.) is a major crop that feeds 40% of the world's population. Over the past several decades, advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat, and the genetic basis of agronomically important traits, which promote the breeding of elite varieties. In this review, we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield, end-use traits, flowering regulation, nutrient use efficiency, and biotic and abiotic stress responses, and various breeding strategies that contributed mainly by Chinese scientists. Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools, high-throughput phenotyping platforms, sequencing-based cloning strategies, high-efficiency genetic transformation systems, and speed-breeding facilities. These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture in China and throughout the world.


Assuntos
Melhoramento Vegetal , Triticum , Genoma de Planta/genética , Genômica , Fenótipo , Locos de Características Quantitativas/genética , Triticum/genética
20.
Front Plant Sci ; 13: 883868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845672

RESUMO

Allohexaploidization and continuous introgression play a key role in the origin and evolution of bread wheat. The genetic bottleneck of bread wheat resulting from limited germplasms involved in the origin and modern breeding may be compensated by gene flow from tetraploid wheat through introgressive hybridization. The inter-ploidy hybridization between hexaploid and tetraploid wheat generates pentaploid hybrids first, which absorbed genetic variations both from hexaploid and tetraploid wheat and have great potential for re-evolution and improvement in bread wheat. Therefore, understanding the effects of the pentaploid hybrid is of apparent significance in our understanding of the historic introgression and in informing breeding. In the current study, two sets of F2 populations of synthetic pentaploid wheat (SPW1 and SPW2) and synthetic hexaploid wheat (SHW1 and SHW2) were created to analyze differences in recombination frequency (RF) of AB genomes and distorted segregation of polymorphic SNP markers through SNP genotyping. Results suggested that (1) the recombination of AB genomes in the SPW populations was about 3- to 4-fold higher than that in the SHW populations, resulting from the significantly (P < 0.01) increased RF between adjacent and linked SNP loci, especially the variations that occurred in a pericentromeric region which would further enrich genetic diversity; (2) the crosses of hexaploid × tetraploid wheat could be an efficient way to produce pentaploid derivatives than the crosses of tetraploid × hexaploid wheat according to the higher germination rate found in the former crosses; (3) the high proportion of distorted segregation loci that skewed in favor of the female parent genotype/allele in the SPW populations might associate with the fitness and survival of the offspring. Based on the presented data, we propose that pentaploid hybrids should increasingly be used in wheat breeding. In addition, the contribution of gene flow from tetraploid wheat to bread wheat mediated by pentaploid introgressive hybridization also was discussed in the re-evolution of bread wheat.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...