Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(9): 6863-6886, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38386537

RESUMO

Tumor-associated macrophages (TAMs) are among the most abundant infiltrating leukocytes in the tumor microenvironment (TME). Reprogramming TAMs from protumor M2 to antitumor M1 phenotype is a promising strategy for remodeling the TME and promoting antitumor immunity; however, the development of an efficient strategy remains challenging. Here, a genetically modified bacterial biomimetic vesicle (BBV) with IFN-γ exposed on the surface in a nanoassembling membrane pore structure was constructed. The engineered IFN-γ BBV featured a nanoscale structure of protein and lipid vesicle, the existence of rich pattern-associated molecular patterns (PAMPs), and the costimulation of introduced IFN-γ molecules. In vitro, IFN-γ BBV reprogrammed M2 macrophages to M1, possibly through NF-κB and JAK-STAT signaling pathways, releasing nitric oxide (NO) and inflammatory cytokines IL-1ß, IL-6, and TNF-α and increasing the expression of IL-12 and iNOS. In tumor-bearing mice, IFN-γ BBV demonstrated a targeted enrichment in tumors and successfully reprogrammed TAMs into the M1 phenotype; notably, the response of antigen-specific cytotoxic T lymphocyte (CTL) in TME was promoted while the immunosuppressive myeloid-derived suppressor cell (MDSC) was suppressed. The tumor growth was found to be significantly inhibited in both a TC-1 tumor and a CT26 tumor. It was indicated that the antitumor effects of IFN-γ BBV were macrophage-dependent. Further, the modulation of TME by IFN-γ BBV produced synergistic effects against tumor growth and metastasis with an immune checkpoint inhibitor in an orthotopic 4T1 breast cancer model which was insensitive to anti-PD-1 mAb alone. In conclusion, IFN-γ-modified BBV demonstrated a strong capability of efficiently targeting tumor and tuning a cold tumor hot through reprogramming TAMs, providing a potent approach for tumor immunotherapy.


Assuntos
Neoplasias , Macrófagos Associados a Tumor , Animais , Camundongos , Microambiente Tumoral , Biomimética , Neoplasias/terapia , Imunidade
2.
Neurobiol Dis ; 188: 106346, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37931884

RESUMO

Sprouting of mossy fibers, one of the most consistent findings in tissue from patients with mesial temporal lobe epilepsy, exhibits several uncommon axonal growth features and has been considered a paradigmatic example of circuit plasticity that occurs in the adult brain. Clarifying the mechanisms responsible may provide new insight into epileptogenesis as well as axon misguidance in the central nervous system. Methyl-CpG-binding protein 2 (MeCP2) binds to methylated genomic DNA to regulate a range of physiological functions implicated in neuronal development and adult synaptic plasticity. However, exploring the potential role of MeCP2 in the documented misguidance of axons in the dentate gyrus has not yet been attempted. In this study, a status epilepticus-induced decrease of neuronal MeCP2 was observed in the dentate gyrus (DG). An essential regulatory role of MeCP2 in the development of functional mossy fiber sprouting (MFS) was confirmed through stereotaxic injection of a recombinant adeno-associated virus (AAV) to up- or down-regulate MeCP2 in the dentate neurons. Chromatin immunoprecipitation sequencing (ChIP-seq) was performed to identify the binding profile of native MeCP2 using micro-dissected dentate tissues. In both dentate tissues and HT22 cell lines, we demonstrated that MeCP2 could act as a transcription repressor on miR-682 with the involvement of the DNA methylation mechanism. Further, we found that miR-682 could bind to mRNA of phosphatase and tensin homolog (PTEN) in a sequence specific manner, thus leading to the suppression of PTEN and excessive activation of mTOR. This study therefore presents a novel epigenetic mechanism by identifying MeCP2/miR-682/PTEN/mTOR as an essential signal pathway in regulating the formation of MFS in the temporal lobe epileptic (TLE) mice. SIGNIFICANCE STATEMENT: Understanding the mechanisms that regulate axon guidance is important for a better comprehension of neural disorders. Sprouting of mossy fibers, one of the most consistent findings in patients with mesial temporal lobe epilepsy, has been considered a paradigmatic example of circuit plasticity in the adult brain. Although abnormal regulation of DNA methylation has been observed in both experimental rodents and humans with epilepsy, the potential role of DNA methylation in this well-documented example of sprouting of dentate axon remains elusive. This study demonstrates an essential role of methyl-CpG-binding protein 2 in the formation of mossy fiber sprouting. The underlying signal pathway has been also identified. The data hence provide new insight into epileptogenesis as well as axon misguidance in the central nervous system.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , MicroRNAs , Animais , Humanos , Camundongos , Giro Denteado/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , MicroRNAs/metabolismo , Fibras Musgosas Hipocampais , Serina-Treonina Quinases TOR/metabolismo
3.
BMC Surg ; 23(1): 329, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891563

RESUMO

PURPOSE: Previous anatomical studies of the urogenital fascia (UGF) have focused on males, and there is a lack of relevant anatomical studies on the distribution of the extraperitoneal UGF in females. METHODS: In this investigation, guided by the embryonic development of the female urogenital system, the ventral pelvic fascia structure of 10 female cadavers was dissected, and the distribution and morphology of female extraperitoneal UGF were observed, recorded in text, photographs and video, and 3D modeling was performed. RESULTS: We find that in the female extraperitoneal space there is a migratory fascial structure, the UGF, which surrounds the urogenital system and extends from the perinephric region to the pelvis along with the development of the urogenital organs. The two layers of the UGF are composed of loose connective tissue rich in fat that surrounds the urogenital organs, their accessory vascular structures, and the nerves of the abdominopelvic cavity. In the pelvis, it participates in the formation of the ligamentous structures around the rectum and uterus. Finally, it surrounds the bladder and gradually moves into the loose connective tissue of the medial umbilical fold. CONCLUSIONS: Sorting out the distribution characteristics of UGF has some reference value for studying the metastasis of gynecological tumors, the biomechanical structure of the female pelvis, and the surgical methods of gynecology, colorectal surgery, and hernia surgery.


Assuntos
Laparoscopia , Sistema Urogenital , Masculino , Humanos , Feminino , Sistema Urogenital/anatomia & histologia , Pelve , Reto , Fáscia/anatomia & histologia , Peritônio , Cadáver , Formaldeído
4.
J Nanobiotechnology ; 21(1): 326, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684628

RESUMO

Vaccine is one of the most promising strategies for cancer immunotherapy; however, there are no therapeutic cancer vaccine achieving significant clinical efficacy till now. The main limiting factors include the immune suppression and escape mechanisms developed by tumor and not enough capacity of vaccines to induce a vigorous anti-tumor immunity. This study aimed to develop a strategy of membrane-based biomimetic nanovaccine and investigate the immunological outcomes of utilizing the unique immunostimulatory mechanisms derived of immunogenic cell death (ICD) and of fulfilling a simultaneous nanoscale delivery of a highlighted tumor antigen and broad membrane-associated tumor antigens in the vaccine design. TC-1 tumor cells were treated in vitro with a mixture of mitoxantrone and curcumin for ICD induction, and then chitosan (CS)-coated polylactic co-glycolic acid (PLGA) nanoparticles loaded with HPV16 E744-62 peptides were decorated with the prepared ICD tumor cell membrane (IM); further, the IM-decorated nanoparticles along with adenosine triphosphate (ATP) were embedded with sodium alginate (ALG) hydrogel, And then, the immunological features and therapeutic potency were evaluated in vitro and in vivo. The nanovaccine significantly stimulated the migration, antigen uptake, and maturation of DCs in vitro, improved antigen lysosome escape, and promoted the retention at injection site and accumulation in LNs of the tumor antigen in vivo. In a subcutaneously grafted TC-1 tumor model, the therapeutic immunization of nanovaccine elicited a dramatical antitumor immunity. This study provides a strategy for the development of tumor vaccines.


Assuntos
Vacinas Anticâncer , Morte Celular Imunogênica , Imunização , Imunoterapia , Antígenos de Neoplasias
5.
ACS Nano ; 17(18): 18596-18607, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37698300

RESUMO

The demand for the ultrasensitive and rapid quantitative analysis of trace target analytes has become increasingly urgent. However, the sensitivity of traditional immunoassay-based detection methods is limited due to the contradiction between molecular recognition and signal amplification caused by the size effect of nanoprobes. To address this dilemma, we describe versatile M13 phage-assisted immunorecognition and signal transduction spatiotemporal separation that enable ultrasensitive light-scattering immunoassay systems for the quantitative detection of low-abundance target analytes. The newly developed immunoassay strategy combines the M13 phage-assisted light scattering signal fluctuations of gold nanoparticles (AuNPs) with gold in situ growth (GISG) technology. Given the synergy of M13 phage-mediated leverage effect and GISG-amplified light scattering signal modulation, the practical detection capability of this strategy can achieve the ultrasensitive and rapid quantification of ochratoxin A and alpha-fetoprotein in real samples at the subfemtomolar level within 50 min, displaying about 4 orders of magnitude enhancement in sensitivity compared with traditional phage-based ELISA. To further improve the sensitivity of our immunoassay, the biotin-streptavidin amplification scheme is implemented to detect severe acute respiratory syndrome coronavirus 2 spike protein down to the attomolar range. Overall, this study offers a direction for ultrasensitive quantitative detection of target analytes by the synergistic combination of M13 phage-mediated leverage effect and GISG-amplified light scattering signal modulation.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , Bacteriófago M13 , Ouro , Imunoensaio
6.
Int J Nanomedicine ; 18: 4541-4554, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576463

RESUMO

Background: Peptide-based vaccines have broad application prospects because of their safety, simple preparation, and effectiveness, especially in the development of personalized cancer vaccines, which have shown great advantages. However, the current peptide-based vaccines often require artificial synthesis and intricate delivery technology, which increases the cost and complexity of preparation. Methods: Here, we developed a simple technique for combining a peptide and a delivery system using the natural secretion system of bacteria. Specifically, we biosynthesized an antigenic peptide in bacteria, which was then extracellularly released through the bacterial secretory vesicles, thus simultaneously achieving the biosynthesis and delivery of the peptide. Results: The system utilizes the natural properties of bacterial vesicles to promote antigen uptake and dendritic cell (DC) maturation. Therefore, tumor-specific CD4+ Th1 and CD8+ cytotoxic T lymphocyte (CTL) responses were induced in TC-1 tumor-bearing mice, thereby efficiently suppressing tumor growth. Conclusion: This research promotes innovation and extends the application of peptide-based vaccine biosynthesis technology. Importantly, it provides a new method for personalized cancer immunotherapy that uses screened peptides as antigens in the future.


Assuntos
Vacinas Anticâncer , Neoplasias , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Camundongos , Animais , Membrana Externa Bacteriana , Linfócitos T Citotóxicos , Peptídeos , Antígenos , Vacinas de Subunidades Antigênicas , Células Dendríticas , Camundongos Endogâmicos C57BL
7.
J Chem Neuroanat ; 132: 102325, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37595695

RESUMO

Anesthetics-induced disruption of dentate neurogenesis in the young brain is strongly suggested to contribute to delayed neurocognitive deficit. In postnatal rodents, the neurogenesis of the dentate gyrus (DG) is sequentially derived from the secondary dentate matrix, tertiary dentate matrix and subgranular zone (SGZ). However, the effects of anesthetics on the dentate neurogenesis derived from specific sites are poorly understood. To trace the new cells generated from the postnatal secondary dentate matrix, peak stage of the tertiary dentate matrix and early stage of the SGZ after isoflurane exposure, mice at postnatal day 1 (P1), P7 and P31 were injected with BrdU at 12 h before the exposure. We found that isoflurane exposure significantly reduced the numbers of proliferating cells (1 day old), immature granule cells (21 days old) or mature granule cells (42 days old) derived from the peak stage of the tertiary dentate matrix and postnatal secondary dentate matrix, but not from the SGZ. Quantitative assessment of BrdU-/BrdU+NeuN-positive cells and cleaved caspase-3 level in the DG indicated that the reduction was correlated with cell loss rather than neuronal differentiation. Mechanistically, we demonstrated that the PI3K/Akt/GSK-3ß pathway enriched by mRNA-sequencing is a requirement for the isoflurane-induced loss of 1-day-old proliferating cells generated from the tertiary dentate matrix. In addition, this study demonstrated that P1 and P7 mice, but not P31 mice exposure to isoflurane resulted in subsequent deficits in performance of the tasks of the Morris Water Maze.


Assuntos
Isoflurano , Animais , Camundongos , Isoflurano/farmacologia , Bromodesoxiuridina , Glicogênio Sintase Quinase 3 beta , Fosfatidilinositol 3-Quinases , Neurogênese
8.
Small ; 19(50): e2302922, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649222

RESUMO

The notorious limitation of conventional surgical excision of primary tumor is the omission of residual and occult tumor cells, which often progress to recurrence and metastasis, leading to clinical treatment failure. The therapeutic vaccine is emerging as a promising candidate for dealing with the issue of postsurgical tumor residuals or nascent metastasis. Here, a flexible and modularized nanovaccine scaffold based on the SpyCatcher003-decorated shell (S) domain of norovirus (Nov) is employed to support the presentation of varied tumor neoantigens fused with SpyTag003. The prepared tumor neoantigen-based nanovaccines (Neo-NVs) are able to efficiently target to lymph nodes and engage with DCs in LNs, triggering strong antigen-specific T-cell immunity and significantly inhibiting the growth of established orthotopic 4T1 breast tumor in mice. Further, the combination of Neo-NVs and anti-PD-1 monoclonal antibody (mAb) produces significant inhibition on postsurgical tumor recurrence and metastasis and induces a long-lasting immune memory. In conclusion, the study provides a simple and reliable strategy for rapid preparing personalized neoantigens-based cancer vaccines and engaging checkpoint treatment to restore the capability of tumor immune surveillance and clearance in surgical patients.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Animais , Camundongos , Inibidores de Checkpoint Imunológico , Recidiva Local de Neoplasia , Imunoterapia , Neoplasias/terapia
9.
BMC Surg ; 23(1): 93, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069543

RESUMO

BACKGROUND: The architecture of retrorectal fasciae is complex, as determined by different anatomical concepts. The aim of this study was to examine the anatomical characteristics of the inferomedial extension of the urogenital fascia (UGF) involving the pelvis to explore its relationship with the adjacent fasciae. Furthermore, we have expounded on the clinical application of UGF. METHOD: For our study, we examined 20 adult male pelvic specimens fixed in formalin, including 2 entire pelvic specimens and 18 semipelvic specimens. Our department has performed 466 laparoscopic rectal cancer procedures since January 2020. We reviewed the surgical videos involving UGF preservation and analyzed the anatomy of the UGF. RESULTS: The bilateral hypogastric nerves ran between the visceral and parietal layers of the UGF. The visceral fascia migrated ventrally at the fourth sacral vertebra, which formed the rectosacral fascia together with the fascia propria of the rectum; the parietal layer continually extended to the pelvic diaphragm, terminating at the levator ani muscle. At the third to fourth sacral vertebra level, the two layers constituted the lateral ligaments. CONCLUSION: The double layers of the UGF are vital structures for comprehending the posterior fascia relationship of the rectum. The upper segment between the fascia propria of the rectum and the visceral layer has no evident nerves or blood vessels and is regarded as the " holy plane" for the operation.


Assuntos
Neoplasias Retais , Reto , Adulto , Humanos , Masculino , Reto/cirurgia , Pelve , Fáscia/anatomia & histologia , Neoplasias Retais/cirurgia , Diafragma da Pelve , Cadáver
10.
J Nanobiotechnology ; 21(1): 74, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864424

RESUMO

Innate immune cells are critical in antitumor immune surveillance and the development of antitumor adaptive cellular immunity. Trained innate immune cells demonstrate immune memory-like characteristics, producing more vigorous immune responses to secondary homologous or heterologous stimuli. This study aimed to investigate whether inducing trained immunity is beneficial when using a tumor vaccine to promote antitumor adaptive immune responses. A biphasic delivery system was developed with the trained immunity inducer Muramyl Dipeptide (MDP) and specific tumor antigen human papillomavirus (HPV) E7 peptide encapsulated by poly(lactide-co-glycolide)-acid(PLGA) nanoparticles (NPs), and the NPs along with another trained immunity agonist, ß-glucan, were further embedded in a sodium alginate hydrogel. The nanovaccine formulation demonstrated a depot effect for E7 at the injection site and targeted delivery to the lymph nodes and dendritic cells (DCs). The antigen uptake and maturation of DCs were significantly promoted. A trained immunity phenotype, characterized by increased production of IL-1ß, IL-6, and TNF-α, was induced in vitro and in vivo in response to secondary homologous or heterologous stimulation. Furthermore, prior innate immune training enhanced the antigen-specific INF-γ-expressing immune cell response elicited by subsequent stimulation with the nanovaccine. Immunization with the nanovaccine completely inhibited the growth of TC-1 tumors and even abolished established tumors in mice. Mechanistically, the inclusion of ß-glucan and MDP significantly enhanced the responses of tumor-specific effector adaptive immune cells. The results strongly suggest that the controlled release and targeted delivery of an antigen and trained immunity inducers with an NP/hydrogel biphasic system can elicit robust adaptive immunity, which provides a promising tumor vaccination strategy.


Assuntos
Vacinas Anticâncer , Neoplasias , beta-Glucanas , Humanos , Animais , Camundongos , Adjuvantes Imunológicos/farmacologia , Neoplasias/tratamento farmacológico , beta-Glucanas/farmacologia , Imunização , Hidrogéis
11.
ACS Nano ; 17(4): 3412-3429, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36779845

RESUMO

In recent years, virus-derived self-assembled protein nanoparticles (NPs) have emerged as attractive antigen delivery platforms for developing both preventive and therapeutic vaccines. In this study, we exploited the genetically engineered Norovirus S domain (Nov-S) with SpyCatcher003 fused to the C-terminus to develop a robust, modular, and versatile NP-based carrier platform (Nov-S-Catcher003). The NPs can be conveniently armed in a plug-and-play pattern with SpyTag003-linked antigens. Nov-S-Catcher003 was efficiently expressed in Escherichia coli and self-assembled into highly uniform NPs with a purified protein yield of 97.8 mg/L. The NPs presented high stability at different maintained temperatures and after undergoing differing numbers of freeze-thaw cycles. Tumor vaccine candidates were easily obtained by modifying Nov-S-Catcher003 NPs with SpyTag003-linked tumor antigens. Nov-S-Catcher003-antigen NPs significantly promoted the maturation of bone marrow-derived dendritic cells in vitro and were capable of efficiently migrating to lymph nodes in vivo. In TC-1 and B16F10 tumor-bearing mice, the subcutaneous immunization of NPs elicited robust tumor-specific T-cell immunity, reshaped the tumor microenvironment, and inhibited tumor growth. In the TC-1 model, the NPs even completely abolished established tumors. In conclusion, the Nov-S-Catcher003 system is a promising delivery platform for facilitating the development of NP-based cancer vaccines.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Norovirus , Animais , Camundongos , Norovirus/genética , Linfócitos T , Imunização , Nanopartículas/química , Neoplasias/tratamento farmacológico
12.
BMC Surg ; 23(1): 13, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650515

RESUMO

BACKGROUND: Controversies regarding the anatomical structure of Denonvilliers' fascia and its relationship with surrounding fasciae have sparked a heated discussion, especially concerning whether Denonvilliers' fascia is multilayered. This study aimed to expound on the anatomical structure of Denonvilliers' fascia and its correlation with the peritoneum from the sagittal view and clarify the complex fascial relationship. METHODS: Our study was performed on 20 adult male pelvic specimens fixed in formalin, including 2 entire pelvic specimens and 18 semipelvic specimens. The local adjacent organs and fasciae were dissected, and Denonvilliers' fascia was observed and removed for histological examination. RESULTS: Denonvilliers' fascia was typically single-layered and tough. On the sagittal plane, the peritoneum constituting the peritoneal reflection and Denonvilliers' fascia formed a "Y" shape. Denonvilliers' fascia originated from the peritoneal reflection, extended along the ventral side of the seminal vesicles and prostate, continuing caudally; its bilateral sides closely connected to the urogenital fascia (UGF) of the pelvic wall. In addition, histology preliminarily indicated that the basal cell layers of the peritoneum and Denonvilliers' fascia were continuous and formed a "Y" shape. Furthermore, the basal cells of the two peritonea extended to Denonvilliers' fascia, creating a fused double-layered structure. Some tiny blood vessels or a network of such vessels extended from the peritoneum to Denonvilliers' fascia. CONCLUSION: Denonvilliers' fascia, the extension of the peritoneum in the pelvic floor, appears as a single-layered "Y"-shape on the sagittal plane. Our study provides new support for the peritoneal fusion theory. Understanding the anatomical characteristics of Denonvilliers' fascia and its relationship with the UGF is of guiding significance for inexperienced colorectal surgeons to conduct rectal cancer surgery.


Assuntos
Neoplasias Retais , Reto , Adulto , Humanos , Masculino , Reto/cirurgia , Fáscia , Pelve , Neoplasias Retais/cirurgia , Peritônio , Diafragma da Pelve , Cadáver
13.
Turk Neurosurg ; 33(6): 921-928, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-33978210

RESUMO

AIM: To understand the arachnoid microstructure during infrafloccular approach for facial nerve microvascular decompression (MVD). MATERIAL AND METHODS: This study recruited 55 patients with hemifacial spasm who underwent MVD. Retrospective analyses of the MVD surgical videos were performed to reveal the arachnoid microstructure during the procedures. Cadaveric head specimens (n=8, on 16 sides) were dissected for observation of the microstructure of the arachnoid in the cerebellopontine angle. RESULTS: The arachnoid membrane surrounding the facio-cochleovestibular and lower cranial nerves forms two arachnoid sheaths. Both arachnoid sheaths contain two parts: the outer membranous and inner trabecular part. The membranous part is an intact and translucent membrane that wraps around nerves. The inner trabecular part is located beneath the membranous part and forms a trabecular network that connects the membranous arachnoid, nerves, and blood vessels to form a physical structure. CONCLUSION: The arachnoid connects the facio-cochleovestibular and lower cranial nerves, blood vessels, and cerebellum as a complex physical entity. Therefore, during MVD surgery, sharply dissecting the arachnoid before retracting the flocculus and relocating the offending vessels helps reduce nerve injury.


Assuntos
Espasmo Hemifacial , Cirurgia de Descompressão Microvascular , Humanos , Nervo Facial/cirurgia , Cirurgia de Descompressão Microvascular/métodos , Estudos Retrospectivos , Espasmo Hemifacial/diagnóstico por imagem , Espasmo Hemifacial/cirurgia , Aracnoide-Máter/diagnóstico por imagem , Aracnoide-Máter/cirurgia , Ângulo Cerebelopontino/diagnóstico por imagem , Ângulo Cerebelopontino/cirurgia , Resultado do Tratamento
14.
Front Pharmacol ; 13: 1051280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506554

RESUMO

Apolipoproteins (APOs), the primary protein moiety of lipoproteins, are known for their crucial role in lipid traffic and metabolism. Despite extensive exploration of APOs in cardiovascular diseases, their roles in cancers did not attract enough attention. Recently, research focusing on the roles of APOs in cancers has flourished. Multiple studies demonstrate the interaction of APOs with classical pathways of tumorigenesis. Besides, the dysregulation of APOs may indicate cancer occurrence and progression, thus serving as potential biomarkers for cancer patients. Herein, we summarize the mechanisms of APOs involved in the development of various cancers, their applications as cancer biomarkers and their genetic polymorphism associated with cancer risk. Additionally, we also discuss the potential anti-cancer therapies by virtue of APOs. The comprehensive review of APOs in cancers may advance the understanding of the roles of APOs in cancers and their potential mechanisms. We hope that it will provide novel clues and new therapeutic strategies for cancers.

15.
Surg Radiol Anat ; 44(12): 1531-1543, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36404360

RESUMO

PURPOSE: Many researchers have different views on the origin and anatomy of the preperitoneal fascia. The purpose of this study is to review studies on the anatomy related to the preperitoneal fascia and to investigate the origin, structure, and clinical significance of the preperitoneal fascia in conjunction with previous anatomical findings of the genitourinary fascia, using the embryogenesis of the genitourinary system as a guide. METHODS: Publications on the preperitoneal and genitourinary fascia are reviewed, with emphasis on the anatomy of the preperitoneal fascia and its relationship to the embryonic development of the genitourinary organs. We also describe previous anatomical studies of the genitourinary fascia in the inguinal region through the fixation of formalin-fixed cadavers. RESULTS: Published literature on the origin, structure, and distribution of the preperitoneal fascia is sometimes inconsistent. However, studies on the urogenital fascia provide more than sufficient evidence that the formation of the preperitoneal fascia is closely related to the embryonic development of the urogenital fascia and its tegument. Combined with previous anatomical studies of the genitourinary fascia in the inguinal region of formalin-fixed cadavers showed that there is a complete fascial system. This fascial system moves from the retroperitoneum to the anterior peritoneum as the preperitoneal fascia. CONCLUSIONS: We can assume that the preperitoneal fascia (PPF) is continuous with the retroperitoneal renal fascia, ureter and its accessory vessels, lymphatic vessels, peritoneum of the bladder, internal spermatic fascia, and other peritoneal and pelvic urogenital organ surfaces, which means that the urogenital fascia (UGF) is a complete fascial system, which migrates into PPF in the preperitoneal space and the internal spermatic fascia in the inguinal canal.


Assuntos
Hérnia Inguinal , Humanos , Hérnia Inguinal/cirurgia , Relevância Clínica , Canal Inguinal/anatomia & histologia , Fáscia/anatomia & histologia , Peritônio/anatomia & histologia , Peritônio/cirurgia , Cadáver
16.
Cancers (Basel) ; 14(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36358596

RESUMO

BACKGROUND: The oncogenesis and progression of epithelial ovarian cancer (EOC) is a complicated process involving several key molecules and factors, yet whether microbiota are present in EOC, and their role in the development of EOC, remains greatly unknown. METHODS: In this study, 30 patients were enrolled to compare the similarities and differences of intratumour microbiota among patients with epithelial benign ovarian tumours (EBOTs) and patients with EOC based on the high-throughput sequencing method. Subsequently, we further isolated the specific EOC-related bacteria and defined Propionibacterium acnes as a key strain in facilitating EOC progression. More importantly, we constructed a mouse EOC model to evaluate the effect of the P. acnes strain on EOC using immunohistochemistry, Western blotting, and RT-qPCR. RESULTS: The high-throughput sequencing showed that the intratumour microbiota in EOC tissues had a higher microbial diversity and richness compared to EBOT tissues. The abundance of previously considered pathogens, Actinomycetales, Acinetobacter, Streptococcus, Ochrobacterium, and Pseudomonadaceae Pseudomonas, was increased in the EOC tissues. Meanwhile, we discovered the facilitating role of the P. acnes strain in the progression of EOC, which may be partially associated with the increased inflammatory response to activate the hedgehog (Hh) signalling pathway. This microbial-induced EOC progression mechanism is further confirmed using the inhibitor GANT61. CONCLUSIONS: This study profiled the intratumour microbiota of EBOT and EOC tissues and demonstrated that the diversity and composition of the intratumour microbiota were significantly different. Furthermore, through in vivo and in vitro experiments, we confirmed the molecular mechanism of intratumour microbiota promotion of EOC progression in mice, which induces inflammation to activate the Hh signalling pathway. This could provide us clues for improving EOC treatment.

17.
Front Immunol ; 13: 991857, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189310

RESUMO

The variability and heterogeneity of tumor antigens and the tumor-driven development of immunosuppressive mechanisms leading to tumor escape from established immunological surveillance. Here, the tumor cells were genetically modified to achieve an inducible overexpression of the N-terminal domain of gasdermin D (GSDMD-NT) and effectively cause pyroptosis under a strict control. Pyroptotic tumor cells release damage-associated molecular patterns (DAMPs) and inflammatory cytokines to promote the maturation and migration of bone marrow-derived dendritic cells (BMDCs). Furthermore, local tumor delivery, and preventive or therapeutic subcutaneous immunization of the modified cells, followed by the induction of GSDMD-NT expression, significantly stimulated both the systemic and local responses of antitumor immunity, and reprogrammed the tumor microenvironment, leading to the dramatic suppression of tumor growth in mice. This study has explored the application potency of inducing the pyroptosis of tumor cells in the field of tumor immunotherapy, especially for developing a new and promising personalized tumor vaccine.


Assuntos
Vacinas Anticâncer , Piroptose , Animais , Animais Geneticamente Modificados , Antígenos de Neoplasias , Citocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo
18.
Genes Dis ; 9(5): 1332-1344, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35873020

RESUMO

The autophagy adaptor protein SQSTM1/p62 is overexpressed in breast cancer and has been identified as a metastasis-related protein. However, the mechanism by which SQSTM1/p62 contributes to breast cancer progression and tumor microenvironment remains unclear. This study revealed that silencing SQSTM1/p62 expression suppressed breast cancer progression via regulating cell proliferation and reshaping the tumor microenvironment (TME). Here, we found that SQSTM1/p62 was overexpressed in multiple human cancer tissue types and that was correlated with poor patient overall survival (OS) and disease-free survival (DFS). Moreover, we found that short-hairpin RNA (shRNA)-mediated knockdown of p62 expression significantly inhibited cell proliferation, migration, and invasion, and promoted cell death in vitro, as well as suppressed breast cancer growth and lung metastasis in vivo. In addition, flow cytometry analysis of splenocytes and tumor infiltrating lymphocytes (TILs) indicated that the numbers of CD8α+ interferon (IFN)-γ+ cells (CTLs) and CD4+IFN-γ+ (Th1) cells were increased while those of CD4+IL-4+ (Th2) cells, tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) were decreased. RT-PCR analyses showed that the gene expression of Th1/Th2 cytokines changed in the tumor microenvironment. Silencing SQSTM1/p62 suppressed tumor cell lung metastasis. Together, our results provide strong evidence that silencing tumor cell SQSTM1/p62 inhibited tumor growth and metastasis through cell cycle arrest and TME regulation. This finding provides a novel molecular therapeutic strategy for breast cancer progression and metastasis treatment.

19.
Fa Yi Xue Za Zhi ; 38(1): 71-76, 2022 Feb 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-35725707

RESUMO

OBJECTIVES: To study the phenomenon of pulmonary hypostasis in corpses of various causes of death, and to explore the potential value of this phenomenon in assisting forensic pathological diagnosis of drowning. METHODS: A total of 235 cases with clear cause of death through systematic autopsy were collected from January 2011 to June 2021 in Guangzhou. According to the location of body discovery, the cases were divided into the water body group (97 cases) and the non-water body group (138 cases), and the water body group was further divided into the water drowning group (90 cases) and the water non-drowning group (7 cases). Non-water body group was further divided into the non-water drowning group (1 case) and the non-water non-drowning group (137 cases). Three senior forensic pathologists independently reviewed autopsy photos to determine whether there was hypostasis in the lungs. The detection rate of pulmonary hypostasis was calculated. RESULTS: The detection rate of pulmonary hypostasis in the water drowning group (90 cases) was 0, and the negative rate was 100%. The detection rate of pulmonary hypostasis in the water non-drowning group (7 cases) was 100% and the negative rate was 0. The detection rate of pulmonary hypostasis in the water body group and in the non-water body group (after excluding 2 cases, 136 cases were calculated) was 7.22% and 87.50%, respectively. There were statistically significant differences in the detection rate of pulmonary hypostasis between water body group and non-water body group, and between water drowning group and water non-drowning group (P<0.05). CONCLUSIONS: The disappearance of pulmonary hypostasis can be used as a specific cadaveric sign to assist in the forensic pathological diagnosis of drowning.


Assuntos
Afogamento , Autopsia , Afogamento/diagnóstico , Afogamento/patologia , Patologia Legal , Humanos , Pulmão/patologia , Água
20.
J Nanobiotechnology ; 20(1): 260, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672856

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), seriously threatens human life and health. The correct folding and polymerization of the receptor-binding domain (RBD) protein of coronavirus in Escherichia coli may reduce the cost of SARS-CoV-2 vaccines. In this study, we constructed this nanopore by using the principle of ClyA porin polymerization triggered by the cell membrane. We used surfactants to "pick" the ClyA-RBD nanopore from the bacterial outer membrane. More importantly, the polymerized RBD displayed on the ClyA-RBD polymerized porin (RBD-PP) already displays some correct spatial conformational epitopes that can induce neutralizing antibodies. The nanostructures of RBD-PP can target lymph nodes and promote antigen uptake and processing by dendritic cells, thereby effectively eliciting the production of anti-SARS-CoV-2 neutralizing antibodies, systemic cellular immune responses, and memory T cells. We applied this PP-based vaccine platform to fabricate an RBD-based subunit vaccine against SARS-CoV-2, which will provide a foundation for the development of inexpensive coronavirus vaccines. The development of a novel vaccine delivery system is an important part of innovative drug research. This novel PP-based vaccine platform is likely to have additional applications, including other viral vaccines, bacterial vaccines, tumor vaccines, drug delivery, and disease diagnosis.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais/metabolismo , COVID-19/prevenção & controle , Humanos , Polimerização , Porinas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...