Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 13(9)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37759920

RESUMO

The independent detection and classification of brain malignancies using magnetic resonance imaging (MRI) can present challenges and the potential for error due to the intricate nature and time-consuming process involved. The complexity of the brain tumor identification process primarily stems from the need for a comprehensive evaluation spanning multiple modules. The advancement of deep learning (DL) has facilitated the emergence of automated medical image processing and diagnostics solutions, thereby offering a potential resolution to this issue. Convolutional neural networks (CNNs) represent a prominent methodology in visual learning and image categorization. The present study introduces a novel methodology integrating image enhancement techniques, specifically, Gaussian-blur-based sharpening and Adaptive Histogram Equalization using CLAHE, with the proposed model. This approach aims to effectively classify different categories of brain tumors, including glioma, meningioma, and pituitary tumor, as well as cases without tumors. The algorithm underwent comprehensive testing using benchmarked data from the published literature, and the results were compared with pre-trained models, including VGG16, ResNet50, VGG19, InceptionV3, and MobileNetV2. The experimental findings of the proposed method demonstrated a noteworthy classification accuracy of 97.84%, a precision success rate of 97.85%, a recall rate of 97.85%, and an F1-score of 97.90%. The results presented in this study showcase the exceptional accuracy of the proposed methodology in accurately classifying the most commonly occurring brain tumor types. The technique exhibited commendable generalization properties, rendering it a valuable asset in medicine for aiding physicians in making precise and proficient brain diagnoses.

2.
Brain Sci ; 13(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37190567

RESUMO

Brain tumor classification is crucial for medical evaluation in computer-assisted diagnostics (CAD). However, manual diagnosis of brain tumors from magnetic resonance imaging (MRI) can be time-consuming and complex, leading to inaccurate detection and classification. This is mainly because brain tumor identification is a complex procedure that relies on different modules. The advancements in Deep Learning (DL) have assisted in the automated process of medical images and diagnostics for various medical conditions, which benefits the health sector. Convolutional Neural Network (CNN) is one of the most prominent DL methods for visual learning and image classification tasks. This study presents a novel CNN algorithm to classify the brain tumor types of glioma, meningioma, and pituitary. The algorithm was tested on benchmarked data and compared with the existing pre-trained VGG16, VGG19, ResNet50, MobileNetV2, and InceptionV3 algorithms reported in the literature. The experimental results have indicated a high classification accuracy of 98.04%, precision, recall, and f1-score success rate of 98%, respectively. The classification results proved that the most common kinds of brain tumors could be categorized with a high level of accuracy. The presented algorithm has good generalization capability and execution speed that can be helpful in the field of medicine to assist doctors in making prompt and accurate decisions associated with brain tumor diagnosis.

3.
Sensors (Basel) ; 22(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35746389

RESUMO

Alzheimer's Disease (AD) is a health apprehension of significant proportions that is negatively impacting the ageing population globally. It is characterized by neuronal loss and the formation of structures such as neurofibrillary tangles and amyloid plaques in the early as well as later stages of the disease. Neuroimaging modalities are routinely used in clinical practice to capture brain alterations associated with AD. On the other hand, deep learning methods are routinely used to recognize patterns in underlying data distributions effectively. This work uses Convolutional Neural Network (CNN) architectures in both 2D and 3D domains to classify the initial stages of AD into AD, Mild Cognitive Impairment (MCI) and Normal Control (NC) classes using the positron emission tomography neuroimaging modality deploying data augmentation in a random zoomed in/out scheme. We used novel concepts such as the blurring before subsampling principle and distant domain transfer learning to build 2D CNN architectures. We performed three binaries, that is, AD/NC, AD/MCI, MCI/NC and one multiclass classification task AD/NC/MCI. The statistical comparison revealed that 3D-CNN architecture performed the best achieving an accuracy of 89.21% on AD/NC, 71.70% on AD/MCI, 62.25% on NC/MCI and 59.73% on AD/NC/MCI classification tasks using a five-fold cross-validation hyperparameter selection approach. Data augmentation helps in achieving superior performance on the multiclass classification task. The obtained results support the application of deep learning models towards early recognition of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodos
4.
J Healthc Eng ; 2022: 1302170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186220

RESUMO

Alzheimer's disease (AD) is an irreversible illness of the brain impacting the functional and daily activities of elderly population worldwide. Neuroimaging sensory systems such as Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) measure the pathological changes in the brain associated with this disorder especially in its early stages. Deep learning (DL) architectures such as Convolutional Neural Networks (CNNs) are successfully used in recognition, classification, segmentation, detection, and other domains for data interpretation. Data augmentation schemes work alongside DL techniques and may impact the final task performance positively or negatively. In this work, we have studied and compared the impact of three data augmentation techniques on the final performances of CNN architectures in the 3D domain for the early diagnosis of AD. We have studied both binary and multiclass classification problems using MRI and PET neuroimaging modalities. We have found the performance of random zoomed in/out augmentation to be the best among all the augmentation methods. It is also observed that combining different augmentation methods may result in deteriorating performances on the classification tasks. Furthermore, we have seen that architecture engineering has less impact on the final classification performance in comparison to the data manipulation schemes. We have also observed that deeper architectures may not provide performance advantages in comparison to their shallower counterparts. We have further observed that these augmentation schemes do not alleviate the class imbalance issue.


Assuntos
Doença de Alzheimer , Idoso , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Neuroimagem
5.
Comput Math Methods Med ; 2021: 9025470, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754327

RESUMO

Deep learning (DL) is a branch of machine learning and artificial intelligence that has been applied to many areas in different domains such as health care and drug design. Cancer prognosis estimates the ultimate fate of a cancer subject and provides survival estimation of the subjects. An accurate and timely diagnostic and prognostic decision will greatly benefit cancer subjects. DL has emerged as a technology of choice due to the availability of high computational resources. The main components in a standard computer-aided design (CAD) system are preprocessing, feature recognition, extraction and selection, categorization, and performance assessment. Reduction of costs associated with sequencing systems offers a myriad of opportunities for building precise models for cancer diagnosis and prognosis prediction. In this survey, we provided a summary of current works where DL has helped to determine the best models for the cancer diagnosis and prognosis prediction tasks. DL is a generic model requiring minimal data manipulations and achieves better results while working with enormous volumes of data. Aims are to scrutinize the influence of DL systems using histopathology images, present a summary of state-of-the-art DL methods, and give directions to future researchers to refine the existing methods.


Assuntos
Aprendizado Profundo , Diagnóstico por Computador/métodos , Neoplasias/diagnóstico , Algoritmos , Inteligência Artificial/tendências , Biologia Computacional/métodos , Biologia Computacional/tendências , Bases de Dados Factuais , Aprendizado Profundo/tendências , Diagnóstico por Computador/tendências , Feminino , Humanos , Aprendizado de Máquina/tendências , Masculino , Neoplasias/classificação , Prognóstico
6.
Brain Inform ; 8(1): 23, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34725741

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative brain pathology formed due to piling up of amyloid proteins, development of plaques and disappearance of neurons. Another common subtype of dementia like AD, Parkinson's disease (PD) is determined by the disappearance of dopaminergic neurons in the region known as substantia nigra pars compacta located in the midbrain. Both AD and PD target aged population worldwide forming a major chunk of healthcare costs. Hence, there is a need for methods that help in the early diagnosis of these diseases. PD subjects especially those who have confirmed postmortem plaque are a strong candidate for a second AD diagnosis. Modalities such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) can be combined with deep learning methods to diagnose these two diseases for the benefit of clinicians. RESULT: In this work, we deployed a 3D Convolutional Neural Network (CNN) to extract features for multiclass classification of both AD and PD in the frequency and spatial domains using PET and SPECT neuroimaging modalities to differentiate between AD, PD and Normal Control (NC) classes. Discrete Cosine Transform has been deployed as a frequency domain learning method along with random weak Gaussian blurring and random zooming in/out augmentation methods in both frequency and spatial domains. To select the hyperparameters of the 3D-CNN model, we deployed both 5- and 10-fold cross-validation (CV) approaches. The best performing model was found to be AD/NC(SPECT)/PD classification with random weak Gaussian blurred augmentation in the spatial domain using fivefold CV approach while the worst performing model happens to be AD/NC(PET)/PD classification without augmentation in the frequency domain using tenfold CV approach. We also found that spatial domain methods tend to perform better than their frequency domain counterparts. CONCLUSION: The proposed model provides a good performance in discriminating AD and PD subjects due to minimal correlation between these two dementia types on the clinicopathological continuum between AD and PD subjects from a neuroimaging perspective.

7.
J Digit Imaging ; 33(5): 1073-1090, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32728983

RESUMO

Alzheimer's disease (AD) is an irreversible devastative neurodegenerative disorder associated with progressive impairment of memory and cognitive functions. Its early diagnosis is crucial for the development of possible future treatment option(s). Structural magnetic resonance images (sMRI) play an important role to help in understanding the anatomical changes related to AD especially in its early stages. Conventional methods require the expertise of domain experts and extract hand-picked features such as gray matter substructures and train a classifier to distinguish AD subjects from healthy subjects. Different from these methods, this paper proposes to construct multiple deep 2D convolutional neural networks (2D-CNNs) to learn the various features from local brain images which are combined to make the final classification for AD diagnosis. The whole brain image was passed through two transfer learning architectures; Inception version 3 and Xception, as well as a custom Convolutional Neural Network (CNN) built with the help of separable convolutional layers which can automatically learn the generic features from imaging data for classification. Our study is conducted using cross-sectional T1-weighted structural MRI brain images from Open Access Series of Imaging Studies (OASIS) database to maintain the size and contrast over different MRI scans. Experimental results show that the transfer learning approaches exceed the performance of non-transfer learning-based approaches demonstrating the effectiveness of these approaches for the binary AD classification task.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Doença de Alzheimer/diagnóstico por imagem , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Neuroimagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...