Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38610524

RESUMO

In this manuscript, we present a novel deployment protection method aimed at safeguarding aeronautical radio altimeters (RAs) from interference caused by fifth-generation (5G) telecommunication base stations (BSs). Our methodology involves an integrated interference model for defining prohibited zones and utilizes power control and angle shutoff methods to mitigate interference. First, to ensure reliable protection, we define both horizontal and vertical prohibited zones and investigate their variations to immunize RA against 5G interference. Second, we validate the effectiveness of the model in various operational scenarios, analyzing the influence of factors such as base station types, antenna parameters, flight altitude, and aircraft attitudes to cover a wide range of real-world scenarios. Third, to mitigate interference, we propose and analyze the power control and angle shutoff methods through simulation for the RMa prohibited zone. Our results demonstrate the efficacy of the deployment protection method in safeguarding RAs from 5G interference, providing guidance for interference protection during civil aviation operations and base station deployment near airports.

2.
Micromachines (Basel) ; 14(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38004940

RESUMO

This paper proposed a right-handed circularly polarized (RHCP) micro-strip antenna for multi-navigation system applications. The size of the antenna is 70 mm × 70 mm × 2 mm, which is fabricated on an FR4 substrate. A meandering technique on a patch layer and asymmetrical defected ground structures (DGS) are employed to achieve the purpose of miniaturization and increase the bandwidth of the axial ratio. The prototype of this antenna is fabricated according to simulations where the bandwidth of return loss, bandwidth of axial ratio, and radio pattern are further testified. The bandwidth of return loss (S11) and axial ratio (AR) of the antennas are from 1.540 GHz to 1.612 GHz and 1.554 GHz to 1.601 GHz, which would be available for L1 of GPS, L1 of SBAS, E1 of Galileo as well as B1I and B1C of BDS-3, the last two of which can be used for aircraft tracking. The relative bandwidth is 2.98%, which satisfies the standard of wide-band patch antennas.

3.
Materials (Basel) ; 15(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35591520

RESUMO

In this study, we predicted and investigated a new light-element compound B-C-N in Pm phase, denoted as Pm-BCN, using density functional theory. Pm-BCN is mechanically, dynamically, and thermodynamically stable. The elastic moduli of Pm-BCN are larger than those of other B-C-N and light-element compounds, such as P213 BN, B2C3, P4/m BN, Pnc2 BN, and dz4 BN. By studying the mechanical anisotropy of elastic moduli, we proved that Pm-BCN is a mechanically anisotropic material. In addition, the shear anisotropy factors A2 and ABa of Pm-BCN are smaller than those of the seven B-C-N compounds mentioned in this paper. Pm-BCN is a semiconductor material with an indirect and wide band gap, suggesting that Pm-BCN can be applied in microelectronic devices.

4.
Materials (Basel) ; 11(5)2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29695091

RESUMO

The structural, mechanical, elastic anisotropic, and electronic properties of hexagonal germanium carbonitride (h-GeCN) are systematically investigated using the first-principle calculations method with the ultrasoft pseudopotential scheme in the frame of generalized gradient approximation in the present work. The h-GeCN are mechanically and dynamically stable, as proved by the elastic constants and phonon spectra, respectively. The h-GeCN is brittle because the ratio B/G and Poisson’s ratio v of the h-GeCN are less than 1.75 and 0.26, respectively. For h-GeCN, from brittleness to ductility, the transformation pressures are 5.56 GPa and 5.63 GPa for B/G and Poisson’s ratio v, respectively. The h-GeCN exhibits the greater elastic anisotropy in Young’s modulus and the sound velocities. In addition, the calculated band structure of h-GeCN reveals that there is no band gap for h-GeCN with the HSE06 hybrid functional, so the h-GeCN is metallic.

5.
Materials (Basel) ; 10(8)2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28786960

RESUMO

The structural, mechanical, elastic anisotropic, and electronic properties of Pbca-XN (X = C, Si, Ge) are investigated in this work using the Perdew-Burke-Ernzerhof (PBE) functional, Perdew-Burke-Ernzerhof for solids (PBEsol) functional, and Ceperly and Alder, parameterized by Perdew and Zunger (CA-PZ) functional in the framework of density functional theory. The achieved results for the lattice parameters and band gap of Pbca-CN with the PBE functional in this research are in good accordance with other theoretical results. The band structures of Pbca-XN (X = C, Si, Ge) show that Pbca-SiN and Pbca-GeN are both direct band gap semiconductor materials with a band gap of 3.39 eV and 2.22 eV, respectively. Pbca-XN (X = C, Si, Ge) exhibits varying degrees of mechanical anisotropic properties with respect to the Poisson's ratio, bulk modulus, shear modulus, Young's modulus, and universal anisotropic index. The (001) plane and (010) plane of Pbca-CN/SiN/GeN both exhibit greater elastic anisotropy in the bulk modulus and Young's modulus than the (100) plane.

6.
Materials (Basel) ; 10(6)2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28772964

RESUMO

The structural, mechanical, anisotropic, electronic and thermal properties of Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase are investigated in this work. The calculations have been performed with an ultra-soft pseudopotential by using the generalized gradient approximation and local density approximation in the framework of density functional theory. The achieved results for the lattice constants and band gaps of P42/ncm-Si and P42/ncm-Ge in this research have good accordance with other results. The calculated elastic constants and elastic moduli of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase are better than that of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/mnm phase. The Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase exhibit varying degrees of mechanical anisotropic properties in Poisson's ratio, shear modulus, Young's modulus, and universal anisotropic index. The band structures of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase show that they are all indirect band gap semiconductors with band gap of 1.46 eV, 1.25 eV, 1.36 eV and 1.00 eV, respectively. In addition, we also found that the minimum thermal conductivity κmin of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase exhibit different degrees of anisotropic properties in (001), (010), (100) and (01¯0) planes.

7.
Nanomaterials (Basel) ; 7(1)2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-28336837

RESUMO

Structural, mechanical, electronic properties, and stability of boron nitride (BN) in Pnma structure were studied using first-principles calculations by Cambridge Serial Total Energy Package (CASTEP) plane-wave code, and the calculations were performed with the local density approximation and generalized gradient approximation in the form of Perdew-Burke-Ernzerhof. This BN, called Pnma-BN, contains four boron atoms and four nitrogen atoms buckled through sp³-hybridized bonds in an orthorhombic symmetry unit cell with Space group of Pnma. Pnma-BN is energetically stable, mechanically stable, and dynamically stable at ambient pressure and high pressure. The calculated Pugh ratio and Poisson's ratio revealed that Pnma-BN is brittle, and Pnma-BN is found to turn brittle to ductile (~94 GPa) in this pressure range. It shows a higher mechanical anisotropy in Poisson's ratio, shear modulus, Young's modulus, and the universal elastic anisotropy index AU. Band structure calculations indicate that Pnma-BN is an insulator with indirect band gap of 7.18 eV. The most extraordinary thing is that the band gap increases first and then decreases with the increase of pressure from 0 to 60 GPa, and from 60 to 100 GPa, the band gap increases first and then decreases again.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...