Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22393, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104140

RESUMO

The stability of coal pillar is extremely important to the control of rock strata movement and surface subsidence. It is of great significance for mining design to analyze the stability and failure characteristics of coal and rock pillars left after mining and to study the failure characteristics and rheological properties of coal and rock with different shapes. In this paper, based on uniaxial compression and rheological tests on rock samples, the rheological properties of rock samples with different shapes were discussed by using the nonlinear theoretical mechanics and damage theory, and the rheological mechanical characteristics of coarse yellow sandstone samples under the action of different free surface areas and the same loading contact area were investigated by means of experimental research, theoretical analysis and numerical simulation. The following conclusions were drawn: the failure characteristics and dynamic change process of rock samples with different shapes under the same loading contact area are obtained by uniaxial compression test and multi-stage rheological loading. The uniaxial compressive strengths of rock samples with the same loading contact surface area and different free surface areas are inversely proportional to their free surface areas. For the round sample, the stress level in the rheological test is obviously lower than the instantaneous peak uniaxial compression strength, while for the other samples, the stress level in the rheological test is close to the instantaneous peak uniaxial compression strength. For rock all these samples, both the ratio of steady-state rheological time to final failure time and the deformation degree decrease with the increase of free surface area.

2.
Heliyon ; 9(8): e18965, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37664711

RESUMO

Coal will occupy the main position in China's energy structure for a long time, and the negative externalities of its exploitation have a serious impact on the ground surface and its appurtenances. With the proposal of the dual carbon strategy, the coal-based energy determines that green and safe coal mining should be the priority direction of China's energy development. Taking Xinyi coalmine, which is mined in unstable coal seams with large mining depth, as the research area, the surface response characteristic and subsidence law under the different mining degrees were clarified. Meanwhile, the damage mechanism of buildings was revealed, which was from no obvious damage to Grade Ⅳ under the extremely insufficient mining to subcritical mining. Based on the sustainable development and green production in coalmines, the overburden grout injection technique under buildings that does not affect the normal production was proposed, and its technical principle was described. A weighted grey relational analysis model was established, and obtained that the panel width was the main factor affecting the overburden failure height under subcritical mining. According to the definition of overburden failure degree proposed by the author, the feasibility of overburden grout injection technique under buildings was analyzed and the key parameters, such as slurry diffusion radius, borehole position and depth, grouting system and technology, were determined and successfully applied. The engineering application shows that the maximum surface subsidence after grouting is 253 mm, and the building damage is within the Grade I. Meanwhile, 5.82 Mt of coal resources under the buildings have been liberated, which realizes high quality coal mining, low environmental damage, green and low-carbon, and also provides a reference for the sustainable development of coal enterprises, especially for the exhausted coalmines that recover coal pillars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...