Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
MAbs ; 14(1): 2020203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35133949

RESUMO

Despite recent advances in transgenic animal models and display technologies, humanization of mouse sequences remains one of the main routes for therapeutic antibody development. Traditionally, humanization is manual, laborious, and requires expert knowledge. Although automation efforts are advancing, existing methods are either demonstrated on a small scale or are entirely proprietary. To predict the immunogenicity risk, the human-likeness of sequences can be evaluated using existing humanness scores, but these lack diversity, granularity or interpretability. Meanwhile, immune repertoire sequencing has generated rich antibody libraries such as the Observed Antibody Space (OAS) that offer augmented diversity not yet exploited for antibody engineering. Here we present BioPhi, an open-source platform featuring novel methods for humanization (Sapiens) and humanness evaluation (OASis). Sapiens is a deep learning humanization method trained on the OAS using language modeling. Based on an in silico humanization benchmark of 177 antibodies, Sapiens produced sequences at scale while achieving results comparable to that of human experts. OASis is a granular, interpretable and diverse humanness score based on 9-mer peptide search in the OAS. OASis separated human and non-human sequences with high accuracy, and correlated with clinical immunogenicity. BioPhi thus offers an antibody design interface with automated methods that capture the richness of natural antibody repertoires to produce therapeutics with desired properties and accelerate antibody discovery campaigns. The BioPhi platform is accessible at https://biophi.dichlab.org and https://github.com/Merck/BioPhi.


Assuntos
Aprendizado Profundo , Animais , Anticorpos , Camundongos
2.
J Pharm Sci ; 111(4): 960-969, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35122828

RESUMO

Immunogenicity to biologics is often observed following dosing in human subjects during clinical trials. Both product and host specific factors may be implicated in contributing to a potential immune response. However, even if such risk factors are identified and eliminated as part of the rational quality by design approaches, the outcome in clinic can be uncertain and challenging to predict. Several tools have been employed to identify these risk factors and consequent mitigation approaches implemented prior to dosing in humans. However, the complexity of the immune system with an interplay of network of immune cells involved in driving a long- term immune response as well as patient characteristics, can make it challenging to predict the outcome in clinic. This perspective will provide an insight into recent advances in the risk assessment approaches that are utilized during preclinical stage of development of a biologic. The outputs from such tools can help to rank order and select the most optimal candidate with the least likelihood of an immune response and can further drive the development of a clinical bioanalytical and immunogenicity monitoring strategy. Such a strategy can be proactively shared with the regulators along with the proposal to streamline clinical immunogenicity and personalizing the outcome based on pharmacogenomics and other patient-related factors. This paper provides a roadmap on performing risk assessments through a systematic identification of risks and their mitigations wherever possible. Recommendations on incorporating the key components of such risk assessments as part of the new regulatory submissions are also provided. Shorter abstract Immunogenicity to biologics is common during clinical trials. Both product and host specific factors have been implicated. Several risk assessment tools can be used to identify and mitigate the risk factors responsible for immunogenicity. An insight into recent advances in the risk assessment approaches will be presented. The outputs can define a risk score and guide the clinical bioanalytical and immunogenicity monitoring strategy. A roadmap on performing risk assessments through a systematic identification of risks and their mitigations wherever possible is provided. Best practices for a risk assessment strategy and recommendations on the content for IND and the Integrated summary of Immunogenicity are also provided.


Assuntos
Produtos Biológicos , Humanos , Medição de Risco , Fatores de Risco
3.
AAPS J ; 23(2): 26, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33459871

RESUMO

Accurate assessment of antigen-specific immune responses is critical in the development of safe and efficacious biotherapeutics and vaccines. Endosomal processing of a protein antigen followed by presentation on major histocompatibility complex (MHC) class II constitute necessary steps in the induction of CD4+ T cell immune responses. Current preclinical methods for assessing immunogenicity risk consist of in vitro cell-based assays and computational prediction tools. Cell-based assays are time and labor-intensive while in silico methodologies have limitations. Here, we propose a novel cell-based assay capable of investigating an antigen's endosomal processing and MHC class II presentation capabilities. This novel assay relies on competition between epitopes for MHC class II binding and employs labeled soluble T cell receptors (sTCRs) as detectors of epitope presentation.


Assuntos
Apresentação de Antígeno , Bioensaio/métodos , Mapeamento de Epitopos/métodos , Antígenos de Histocompatibilidade Classe II/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células CHO , Simulação por Computador , Cricetulus , Células Dendríticas , Endossomos/metabolismo , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Epoetina alfa/isolamento & purificação , Epoetina alfa/metabolismo , Voluntários Saudáveis , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Imunoensaio/métodos , Cultura Primária de Células , Receptores de Antígenos de Linfócitos T/isolamento & purificação
4.
Adv Virol ; 2019: 8512363, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31015836

RESUMO

Influenza A viruses (IAV) are evolutionarily successful pathogens, capable of infecting a number of avian and mammalian species and responsible for pandemic and seasonal epidemic disease in humans. To infect new species, IAV typically must overcome a number of species barriers to entry, replication, and egress, even while virus replication is counteracted by antiviral host factors and innate immune mechanisms. A number of host factors have been found to regulate the replication of IAV by interacting with the viral RNA-dependent RNA polymerase (RdRP). The host factor PARP1, a poly-ADP ribosyl polymerase, was required for optimal functions of human, swine, and avian influenza RdRP in human 293T cells. In IAV infection, PARP1 was required for efficient synthesis of viral nucleoprotein (NP) in human lung A549 cells. Intriguingly, pharmacological inhibition of PARP1 enzymatic activity (PARylation) by 4-amino-1,8-naphthalimide led to a 4-fold increase in RdRP activity, and a 2.3-fold increase in virus titer. Exogenous expression of the natural PARylation inhibitor PARG also enhanced RdRP activity. These data suggest a virus-host interaction dynamic where PARP1 protein itself is required, but cellular PARylation has a distinct suppressive modality, on influenza A viral polymerase activity in human cells.

5.
Proc Natl Acad Sci U S A ; 114(38): 10172-10177, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874545

RESUMO

The main barrier to reduction of morbidity caused by influenza is the absence of a vaccine that elicits broad protection against different virus strains. Studies in preclinical models of influenza virus infections have shown that antibodies alone are sufficient to provide broad protection against divergent virus strains in vivo. Here, we address the challenge of identifying an immunogen that can elicit potent, broadly protective, antiinfluenza antibodies by demonstrating that immune complexes composed of sialylated antihemagglutinin antibodies and seasonal inactivated flu vaccine (TIV) can elicit broadly protective antihemagglutinin antibodies. Further, we found that an Fc-modified, bispecific monoclonal antibody against conserved epitopes of the hemagglutinin can be combined with TIV to elicit broad protection, thus setting the stage for a universal influenza virus vaccine.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunoglobulina G/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Receptores de IgE/imunologia , Animais , Cães , Feminino , Humanos , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos C57BL
6.
Annu Rev Immunol ; 35: 285-311, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446061

RESUMO

IgG antibodies mediate a diversity of immune functions by coupling of antigen specificity through the Fab domain to signal transduction via Fc-Fc receptor interactions. Indeed, balanced IgG signaling through type I and type II Fc receptors is required for the control of proinflammatory, anti-inflammatory, and immunomodulatory processes. In this review, we discuss the mechanisms that govern IgG-Fc receptor interactions, highlighting the diversity of Fc receptor-mediated effector functions that regulate immunity and inflammation as well as determine susceptibility to infection and autoimmunity and responsiveness to antibody-based therapeutics and vaccines.


Assuntos
Anticorpos/uso terapêutico , Doenças Autoimunes/imunologia , Imunoglobulina G/metabolismo , Imunoterapia/métodos , Infecções/imunologia , Receptores Fc/metabolismo , Animais , Doenças Autoimunes/terapia , Suscetibilidade a Doenças , Humanos , Imunidade Humoral , Infecções/terapia , Inflamação , Transdução de Sinais
7.
BMC Pharmacol Toxicol ; 17(1): 51, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27817746

RESUMO

BACKGROUND: Antidotes stocking is a critical component of hospital care for poisoned patients in emergency. Antidote stocking represents a major health challenge worldwide and in Lebanon. Systematic data monitoring of antidote stocking in Lebanese hospitals is lacking. The objective of this study is to assess the adequacy of antidotes stocking in Lebanese hospitals according to type and quantity and explore the characteristics associated with their differential availability. METHODS: Data collection to assess antidote availability and its correlate was undertaken through a self-administered questionnaire. The questionnaires were distributed by the unit of surveillance at the Ministry of Public Health to eligible hospitals providing emergency care services. The list of essential antidotes was adapted from the World Health Organization (WHO) list and the British Columbia Drug and Poison Information Centre. RESULTS: Among the 85 Lebanese hospitals surveyed none had in stock all the 35 essential antidotes required. The frequency of stocking by type of antidote varied from a minimum of 1.2 % of the hospitals having a (cyanide kit) to 100 % availability of (atropine and calcium gluconate). Teaching hospitals and those with a large bed-capacity reported a higher number of available antidotes for both immediate and non-immediate use than non-teaching hospitals while controlling for the hospital geographical region and public vs private sector. CONCLUSION: The Lebanese hospitals have a suboptimal stock of essential antidotes supply. It is recommended that the Lebanese Ministry of Public Health monitors closely on the hospital premises the adequacy and availability of essential antidotes stock.


Assuntos
Antídotos/provisão & distribuição , Serviços Médicos de Emergência/provisão & distribuição , Serviço Hospitalar de Emergência , Hospitais de Ensino/provisão & distribuição , Serviço de Farmácia Hospitalar/provisão & distribuição , Antídotos/normas , Estudos Transversais , Serviços Médicos de Emergência/normas , Serviço Hospitalar de Emergência/normas , Hospitais de Ensino/normas , Humanos , Líbano/epidemiologia , Serviço de Farmácia Hospitalar/normas
8.
Cell ; 162(1): 160-9, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26140596

RESUMO

Protective vaccines elicit high-affinity, neutralizing antibodies by selection of somatically hypermutated B cell antigen receptors (BCR) on immune complexes (ICs). This implicates Fc-Fc receptor (FcR) interactions in affinity maturation, which, in turn, are determined by IgG subclass and Fc glycan composition within ICs. Trivalent influenza virus vaccination elicited regulation of anti-hemagglutinin (HA) IgG subclass and Fc glycans, with abundance of sialylated Fc glycans (sFc) predicting quality of vaccine response. We show that sFcs drive BCR affinity selection by binding the Type-II FcR CD23, thus upregulating the inhibitory FcγRIIB on activated B cells. This elevates the threshold requirement for BCR signaling, resulting in B cell selection for higher affinity BCR. Immunization with sFc HA ICs elicited protective, high-affinity IgGs against the conserved stalk of the HA. These results reveal a novel, endogenous pathway for affinity maturation that can be exploited for eliciting high-affinity, broadly neutralizing antibodies through immunization with sialylated immune complexes.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas contra Influenza/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Complexo Antígeno-Anticorpo/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Fragmentos Fc das Imunoglobulinas , Imunoglobulina G/imunologia , Plasmócitos/imunologia , Receptores de Antígenos de Linfócitos B/química , Receptores Fc/metabolismo , Ácidos Siálicos/metabolismo
9.
Proc Natl Acad Sci U S A ; 112(18): E2385-94, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25870292

RESUMO

The antiinflammatory activity of intravenous immunoglobulin (IVIG) is dependent on the presence of sialic acid in the core IgG fragment crystallizable domain (Fc) glycan, resulting in increased conformational flexibility of the CH2 domain with corresponding modulation of Fc receptor (FcR) binding specificity from type I to type II receptors. Sialylated IgG Fc (sFc) increases the activation threshold of innate effector cells to immune complexes by stimulating the up-regulation of the inhibitory receptor FcγRIIB. We have found that the structural alterations induced by sialylation can be mimicked by specific amino acid modifications to the CH2 domain. An IgG Fc variant with a point mutation at position 241 (F→A) exhibits antiinflammatory activity even in the absence of sialylation. F241A and sFc protect mice from arthritis in the K/BxN-induced model and, in the T cell-mediated experimental autoimmune encephalomyelitis (EAE) mouse model, suppress disease by specifically activating regulatory T cells (Treg cells). Protection by these antiinflammatory Fcs in both antibody- and T cell-mediated autoimmune diseases required type II FcRs and the induction of IL-33. These results further clarify the mechanism of action of IVIG in both antibody- and T cell-mediated inflammatory diseases and demonstrate that Fc variants that mimic the structural alterations induced by sialylation, such as F241A, can be promising therapeutic candidates for the treatment of various autoimmune disorders.


Assuntos
Anticorpos/imunologia , Doenças Autoimunes/imunologia , Receptores Fc/imunologia , Linfócitos T/imunologia , Animais , Células da Medula Óssea/citologia , Linfócitos T CD4-Positivos/citologia , Moléculas de Adesão Celular/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Imunoglobulina G/imunologia , Inflamação , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ligação Proteica , Conformação Proteica , Receptores de Superfície Celular/metabolismo , Receptores de IgE/metabolismo , Ácidos Siálicos/química , Transdução de Sinais , Linfócitos T/metabolismo
10.
Nat Immunol ; 15(8): 707-16, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25045879

RESUMO

Antibodies produced in response to a foreign antigen are characterized by polyclonality, not only in the diverse epitopes to which their variable domains bind but also in the various effector molecules to which their constant regions (Fc domains) engage. Thus, the antibody's Fc domain mediates diverse effector activities by engaging two distinct classes of Fc receptors (type I and type II) on the basis of the two dominant conformational states that the Fc domain may adopt. These conformational states are regulated by the differences among antibody subclasses in their amino acid sequence and by the complex, biantennary Fc-associated N-linked glycan. Here we discuss the diverse downstream proinflammatory, anti-inflammatory and immunomodulatory consequences of the engagement of type I and type II Fc receptors in the context of infectious, autoimmune, and neoplastic disorders.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Fragmentos Fc das Imunoglobulinas/imunologia , Receptores de IgG/imunologia , Sequência de Aminoácidos , Anticorpos/imunologia , Apresentação de Antígeno/imunologia , Doenças Autoimunes/imunologia , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/classificação , Imunoglobulina G/imunologia , Neoplasias/imunologia , Conformação Proteica , Estrutura Terciária de Proteína , Receptores de IgG/química , Receptores de IgG/classificação , Vacinação
12.
Proc Natl Acad Sci U S A ; 110(24): 9868-72, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23697368

RESUMO

Immunoglobulins recognize and clear microbial pathogens and toxins through the coupling of variable region specificity to Fc-triggered cellular activation. These proinflammatory activities are regulated, thus avoiding the pathogenic sequelae of uncontrolled inflammation by modulating the composition of the Fc-linked glycan. Upon sialylation, the affinities for Fcγ receptors are reduced, whereas those for alternative cellular receptors, such as dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)/CD23, are increased. We demonstrate that sialylation induces significant structural alterations in the Cγ2 domain and propose a model that explains the observed changes in ligand specificity and biological activity. By analogy to related complexes formed by IgE and its evolutionarily related Fc receptors, we conclude that this mechanism is general for the modulation of antibody-triggered immune responses, characterized by a shift between an "open" activating conformation and a "closed" anti-inflammatory state of antibody Fc fragments. This common mechanism has been targeted by pathogens to avoid host defense and offers targets for therapeutic intervention in allergic and autoimmune disorders.


Assuntos
Moléculas de Adesão Celular/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Lectinas Tipo C/imunologia , Receptores de Superfície Celular/imunologia , Receptores de IgE/imunologia , Receptores de IgG/imunologia , Animais , Sítios de Ligação , Ligação Competitiva , Células CHO , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Dicroísmo Circular , Cricetinae , Cricetulus , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores de IgE/genética , Receptores de IgE/metabolismo , Receptores de IgG/metabolismo , Ácidos Siálicos/metabolismo , Espectrofotometria Ultravioleta , Termodinâmica
13.
PLoS Pathog ; 8(4): e1002668, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22577360

RESUMO

Influenza viruses continue to pose a major public health threat worldwide and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The antiviral cytokine, interferon (IFN) is an essential mediator of the innate immune response and influenza viruses, like many viruses, have evolved strategies to evade this response, resulting in increased replication and enhanced pathogenicity. A cell-based assay that monitors IFN production was developed and applied in a high-throughput compound screen to identify molecules that restore the IFN response to influenza virus infected cells. We report the identification of compound ASN2, which induces IFN only in the presence of influenza virus infection. ASN2 preferentially inhibits the growth of influenza A viruses, including the 1918 H1N1, 1968 H3N2 and 2009 H1N1 pandemic strains and avian H5N1 virus. In vivo, ASN2 partially protects mice challenged with a lethal dose of influenza A virus. Surprisingly, we found that the antiviral activity of ASN2 is not dependent on IFN production and signaling. Rather, its IFN-inducing property appears to be an indirect effect resulting from ASN2-mediated inhibition of viral polymerase function, and subsequent loss of the expression of the viral IFN antagonist, NS1. Moreover, we identified a single amino acid mutation at position 499 of the influenza virus PB1 protein that confers resistance to ASN2, suggesting that PB1 is the direct target. This two-pronged antiviral mechanism, consisting of direct inhibition of virus replication and simultaneous activation of the host innate immune response, is a unique property not previously described for any single antiviral molecule.


Assuntos
Antivirais/farmacologia , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Interferons/biossíntese , Infecções por Orthomyxoviridae/tratamento farmacológico , Animais , Antivirais/química , Células Cultivadas , Cães , Inibidores Enzimáticos/química , Haplorrinos , Humanos , Indóis/química , Vírus da Influenza A/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Replicação Viral/efeitos dos fármacos
14.
J Virol ; 86(10): 5926-30, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22398284

RESUMO

Influenza A viruses containing the promoter mutations G3A/C8U in a given segment express increased levels of the corresponding viral protein during infection due to increased levels of mRNA or cRNA species. The replication of these recombinant viruses is attenuated, and they have an enhanced shedding of noninfectious particles and are incapable of antagonizing interferon (IFN) effectively. Our findings highlight the possibility of increasing influenza virus protein expression and the need for a delicate balance between influenza viral replication, protein expression, and assembly.


Assuntos
Regulação Viral da Expressão Gênica , Vírus da Influenza A/enzimologia , Vírus da Influenza A/genética , Influenza Humana/virologia , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Humanos , Vírus da Influenza A/fisiologia , Mutação , Regiões Promotoras Genéticas , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Replicação Viral
15.
J Virol ; 86(10): 5774-81, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22398287

RESUMO

The influenza virus hemagglutinin molecule possesses a globular head domain that mediates receptor binding and a stalk domain at the membrane-proximal region. We generated functional influenza viruses expressing chimeric hemagglutinins encompassing a variety of globular head and stalk combinations, not only from different hemagglutinin subtypes but also from different hemagglutinin phylogenetic groups. These chimeric recombinant viruses possess growth properties similar to those of wild-type influenza viruses and can be used as reagents to measure domain-specific antibodies in virological and immunological assays.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/genética , Influenza Humana/virologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Quimera/classificação , Quimera/genética , Quimera/imunologia , Expressão Gênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vírus da Influenza A/química , Vírus da Influenza A/classificação , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Recombinação Genética
16.
J Virol ; 86(10): 5782-90, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22398291

RESUMO

Influenza A viruses encoding an altered viral NS1 protein have emerged as promising live attenuated vaccine platforms. A carboxy-terminal truncation in the NS1 protein compromises its interferon antagonism activity, making these viruses attenuated in the host yet still able to induce protection from challenge with wild-type viruses. However, specific viral protein expression by NS1-truncated viruses is known to be decreased in infected cells. In this report, we show that recombinant H5N1 and H1N1 influenza viruses encoding a truncated NS1 protein expressed lower levels of hemagglutinin (HA) protein in infected cells than did wild-type viruses. This reduction in HA protein expression correlated with a reduction in HA mRNA levels in infected cells. NS1 truncation affected the expression of HA protein but not that of the nucleoprotein (NP). This segment specificity was mapped to the terminal sequences of their specific viral RNAs. Since the HA protein is the major immunogenic component in influenza virus vaccines, we sought to restore its expression levels in NS1-truncated viruses in order to improve their vaccine efficacy. For this purpose, we generated an NS1-truncated recombinant influenza A/Puerto Rico/8/34 (rPR8) virus carrying the G3A C8U "superpromoter" mutations in the HA genomic RNA segment. This strategy retained the attenuation properties of the recombinant virus but enhanced the expression level of HA protein in infected cells. Finally, mice immunized with rPR8 viruses encoding a truncated NS1 protein and carrying the G3A C8U mutations in the HA segment demonstrated enhanced protection from wild-type virus challenge over that for mice vaccinated with an rPR8 virus encoding the truncated NS1 protein alone.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H1N1/genética , Virus da Influenza A Subtipo H5N1/genética , Influenza Humana/virologia , Regulação para Cima , Proteínas não Estruturais Virais/genética , Motivos de Aminoácidos , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Galinhas , Feminino , Regulação Viral da Expressão Gênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Humana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas não Estruturais Virais/imunologia
17.
Proc Natl Acad Sci U S A ; 109(7): 2573-8, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22308500

RESUMO

After the emergence of pandemic influenza viruses in 1957, 1968, and 2009, existing seasonal viruses were observed to be replaced in the human population by the novel pandemic strains. We have previously hypothesized that the replacement of seasonal strains was mediated, in part, by a population-scale boost in antibodies specific for conserved regions of the hemagglutinin stalk and the viral neuraminidase. Numerous recent studies have shown the role of stalk-specific antibodies in neutralization of influenza viruses; the finding that stalk antibodies can effectively neutralize virus alters the existing dogma that influenza virus neutralization is mediated solely by antibodies that react with the globular head of the viral hemagglutinin. The present study explores the possibility that stalk-specific antibodies were boosted by infection with the 2009 H1N1 pandemic virus and that those antibodies could have contributed to the disappearance of existing seasonal H1N1 influenza virus strains. To study stalk-specific antibodies, we have developed chimeric hemagglutinin constructs that enable the measurement of antibodies that bind the hemagglutinin protein and neutralize virus but do not have hemagglutination inhibition activity. Using these chimeric hemagglutinin reagents, we show that infection with the 2009 pandemic H1N1 virus elicited a boost in titer of virus-neutralizing antibodies directed against the hemagglutinin stalk. In addition, we describe assays that can be used to measure influenza virus-neutralizing antibodies that are not detected in the traditional hemagglutination inhibition assay.


Assuntos
Anticorpos Antivirais/biossíntese , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Estações do Ano
18.
mBio ; 2(4)2011.
Artigo em Inglês | MEDLINE | ID: mdl-21846828

RESUMO

UNLABELLED: Highly pathogenic avian influenza A (HPAI) viruses of the H5N1 subtype have recently emerged from avian zoonotic reservoirs to cause fatal human disease. Adaptation of HPAI virus RNA-dependent RNA polymerase (PB1, PB2, and PA proteins) and nucleoprotein (NP) to interactions with mammalian host proteins is thought to contribute to the efficiency of viral RNA synthesis and to disease severity. While proteomics experiments have identified a number of human proteins that associate with H1N1 polymerases and/or viral ribonucleoprotein (vRNP), how these host interactions might regulate influenza virus polymerase functions and host adaptation has been largely unexplored. We took a functional genomics (RNA interference [RNAi]) approach to assess the roles of a network of human proteins interacting with influenza virus polymerase proteins in viral polymerase activity from prototype H1N1 and H5N1 viruses. A majority (18 of 31) of the cellular proteins tested, including RNA-binding (DDX17, DDX5, NPM1, and hnRNPM), stress (PARP1, DDB1, and Ku70/86), and intracellular transport proteins, were required for efficient activity of both H1N1 and H5N1 polymerases. NXP2 and NF90 antagonized both polymerases, and six more RNA-associated proteins exhibited strain-specific phenotypes. Remarkably, 12 proteins differentially regulated H5N1 polymerase according to PB2 genotype at mammalian-adaptive residue 627. Among these, DEAD box RNA helicase DDX17/p72 facilitated efficient human-adapted (627K) H5N1 virus mRNA and viral RNA (vRNA) synthesis in human cells. Likewise, the chicken DDX17 homologue was required for efficient avian (627E) H5N1 infection in chicken DF-1 fibroblasts, suggesting that this conserved virus-host interaction contributes to PB2-dependent host species specificity of influenza virus and ultimately to the outcome of human HPAI infections. IMPORTANCE: Highly pathogenic avian influenza A (HPAI) viruses have recently emerged from wild and domestic birds to cause fatal human disease. In human patients, it is thought that adaptation of the viral polymerase, a complex of viral proteins responsible for viral gene expression and RNA genome replication, to interactions with mammalian rather than avian host proteins contributes to disease severity. In this study, we used computational analysis and RNA interference (RNAi) experiments to identify a biological network of human proteins that regulates an H5N1 HPAI virus polymerase, in comparison to a mammalian H1N1 virus. Of 31 proteins tested, 18 (58%) were required for polymerase function in both HPAI and H1N1 viruses. Remarkably, we also found proteins such as DDX17 that governed the HPAI virus polymerase's adaptation to human cells. These virus-host interactions may thus control pathogenicity of HPAI virus in humans and are promising therapeutic targets for antiviral drugs in severe influenza infections.


Assuntos
Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H1N1/enzimologia , Virus da Influenza A Subtipo H5N1/enzimologia , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas do Core Viral/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Humanos , Vírus da Influenza A Subtipo H1N1/patogenicidade , Virus da Influenza A Subtipo H5N1/patogenicidade , Proteínas do Nucleocapsídeo , Nucleofosmina , Ligação Proteica
19.
J Virol ; 85(5): 2235-46, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21159873

RESUMO

Viral vaccine vectors have emerged as an attractive strategy for the development of a human immunodeficiency virus (HIV) vaccine. Recombinant Newcastle disease virus (rNDV) stands out as a vaccine vector since it has a proven safety profile in humans, it is a potent inducer of both alpha interferon (IFN-α) and IFN-ß) production, and it is a potent inducer of dendritic cell (DC) maturation. Our group has previously generated an rNDV vector expressing a codon-optimized HIV Gag protein and demonstrated its ability to induce a Gag-specific CD8(+) T cell response in mice. In this report we demonstrate that the Gag-specific immune response can be further enhanced by the targeting of the rNDV-encoded HIV Gag antigen to DCs. Targeting of the HIV Gag antigen was achieved by the addition of a single-chain Fv (scFv) antibody specific for the DC-restricted antigen uptake receptor DEC205 such that the DEC205 scFv-Gag molecule was encoded for expression as a fusion protein. The vaccination of mice with rNDV coding for the DC-targeted Gag antigen induced an enhanced Gag-specific CD8(+) T cell response and enhanced numbers of CD4(+) T cells and CD8(+) T cells in the spleen relative to vaccination with rNDV coding for a nontargeted Gag antigen. Importantly, mice vaccinated with the DEC205-targeted vaccine were better protected from challenge with a recombinant vaccinia virus expressing the HIV Gag protein. Here we demonstrate that the targeting of the HIV Gag antigen to DCs via the DEC205 receptor enhances the ability of an rNDV vector to induce a potent antigen-specific immune response.


Assuntos
Células Dendríticas/imunologia , Expressão Gênica , Infecções por HIV/imunologia , HIV-1/imunologia , Vírus da Doença de Newcastle/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Células Dendríticas/virologia , Feminino , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Infecções por HIV/virologia , HIV-1/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Vírus da Doença de Newcastle/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...