Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 11(4): e1004166, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25849486

RESUMO

High-throughput data generation and genome-scale stoichiometric models have greatly facilitated the comprehensive study of metabolic networks. The computation of all feasible metabolic routes with these models, given stoichiometric, thermodynamic, and steady-state constraints, provides important insights into the metabolic capacities of a cell. How the feasible metabolic routes emerge from the interplay between flux constraints, optimality objectives, and the entire metabolic network of a cell is, however, only partially understood. We show how optimal metabolic routes, resulting from flux balance analysis computations, arise out of elementary flux modes, constraints, and optimization objectives. We illustrate our findings with a genome-scale stoichiometric model of Escherichia coli metabolism. In the case of one flux constraint, all feasible optimal flux routes can be derived from elementary flux modes alone. We found up to 120 million of such optimal elementary flux modes. We introduce a new computational method to compute the corner points of the optimal solution space fast and efficiently. Optimal flux routes no longer depend exclusively on elementary flux modes when we impose additional constraints; new optimal metabolic routes arise out of combinations of elementary flux modes. The solution space of feasible metabolic routes shrinks enormously when additional objectives---e.g. those related to pathway expression costs or pathway length---are introduced. In many cases, only a single metabolic route remains that is both feasible and optimal. This paper contributes to reaching a complete topological understanding of the metabolic capacity of organisms in terms of metabolic flux routes, one that is most natural to biochemists and biotechnologists studying and engineering metabolism.


Assuntos
Genoma Bacteriano/genética , Genômica/métodos , Modelos Genéticos , Biologia de Sistemas/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Glucose/metabolismo
2.
Epigenetics Chromatin ; 7(1): 30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25408711

RESUMO

BACKGROUND: The activity of a single gene is influenced by the composition of the chromatin in which it is embedded. Nucleosome turnover, conformational dynamics, and covalent histone modifications each induce changes in the structure of chromatin and its affinity for regulatory proteins. The dynamics of histone modifications and the persistence of modification patterns for long periods are still largely unknown. RESULTS: In this study, we present a stochastic mathematical model that describes the molecular mechanisms of histone modification pattern formation along a single gene, with non-phenomenological, physical parameters. We find that diffusion and recruitment properties of histone modifying enzymes together with chromatin connectivity allow for a rich repertoire of stochastic histone modification dynamics and pattern formation. We demonstrate that histone modification patterns at a single gene can be established or removed within a few minutes through diffusion and weak recruitment mechanisms of histone modification spreading. Moreover, we show that strong synergism between diffusion and weak recruitment mechanisms leads to nearly irreversible transitions in histone modification patterns providing stable patterns. In the absence of chromatin connectivity spontaneous and dynamic histone modification boundaries can be formed that are highly unstable, and spontaneous fluctuations cause them to diffuse randomly. Chromatin connectivity destabilizes this synergistic system and introduces bistability, illustrating state switching between opposing modification states of the model gene. The observed bistable long-range and localized pattern formation are critical effectors of gene expression regulation. CONCLUSION: This study illustrates how the cooperative interactions between regulatory proteins and the chromatin state generate complex stochastic dynamics of gene expression regulation.

3.
Mol Biosyst ; 10(9): 2338-46, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-24955938

RESUMO

Signal transduction by prokaryotes almost exclusively relies on two-component systems for sensing and responding to (extracellular) signals. Here, we use stochastic models of two-component systems to better understand the impact of stochasticity on the fidelity and robustness of signal transmission, the outcome of autoregulatory gene expression and the influence of cell growth and division. We report that two-component systems are remarkably robust against copy number fluctuations of the signalling proteins they are composed of, which enhances signal transmission fidelity. Furthermore, we find that due to stochasticity these systems can get locked in an active state for extended time periods when (initially high) signal levels drop to zero. This behaviour can contribute to a bet-hedging adaptation strategy, aiding survival in fluctuating environments. Additionally, autoregulatory gene expression can cause two-component systems to become bistable at realistic parameter values. As a result, two sub-populations of cells can co-exist-active and inactive cells, which contributes to fitness in unpredictable environments. Bistability proved robust with respect to cell growth and division, and is tunable by the growth rate. In conclusion, our results indicate how single cells can cope with the inevitable stochasticity occurring in the activity of their two-component systems. They are robust to disadvantageous fluctuations that scramble signal transduction and they exploit beneficial stochasticity that generates fitness-enhancing heterogeneity across an isogenic population of cells.


Assuntos
Proliferação de Células/fisiologia , Células Procarióticas/fisiologia , Transdução de Sinais/fisiologia , Adaptação Fisiológica/fisiologia , Ciclo Celular/fisiologia , Meio Ambiente , Expressão Gênica/fisiologia , Modelos Estatísticos , Células Procarióticas/metabolismo , Proteínas/metabolismo , Processos Estocásticos
4.
Plant Physiol ; 164(3): 1111-21, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24402049

RESUMO

Data integration is a central activity in systems biology. The integration of genomic, transcript, protein, metabolite, flux, and computational data yields unprecedented information about the system level functioning of organisms. Often, data integration is done purely computationally, leaving the user with little insight in addition to statistical information. In this article, we present a visualization tool for the metabolic network of Synechocystis sp. PCC 6803, an important model cyanobacterium for sustainable biofuel production. We illustrate how this metabolic map can be used to integrate experimental and computational data for Synechocystis sp. PCC 6803 systems biology and metabolic engineering studies. Additionally, we discuss how this map, and the software infrastructure that we supply with it, can be used in the development of other organism-specific metabolic network visualizations. In addition to the Python console package VoNDA (http://vonda.sf.net), we provide a working demonstration of the interactive metabolic map and the associated Synechocystis sp. PCC 6803 genome-scale stoichiometric model, as well as various ready-to-visualize microarray data sets, at http://f-a-m-e.org/synechocytis.


Assuntos
Bases de Dados como Assunto , Redes e Vias Metabólicas , Synechocystis/metabolismo , Adaptação Fisiológica , Biocombustíveis , Escuridão , Genes Bacterianos , Análise do Fluxo Metabólico , Redes e Vias Metabólicas/genética , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Fotossíntese , Synechocystis/genética
5.
PLoS One ; 8(11): e79345, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260203

RESUMO

Single-cell and single-molecule measurements indicate the importance of stochastic phenomena in cell biology. Stochasticity creates spontaneous differences in the copy numbers of key macromolecules and the timing of reaction events between genetically-identical cells. Mathematical models are indispensable for the study of phenotypic stochasticity in cellular decision-making and cell survival. There is a demand for versatile, stochastic modeling environments with extensive, preprogrammed statistics functions and plotting capabilities that hide the mathematics from the novice users and offers low-level programming access to the experienced user. Here we present StochPy (Stochastic modeling in Python), which is a flexible software tool for stochastic simulation in cell biology. It provides various stochastic simulation algorithms, SBML support, analyses of the probability distributions of molecule copy numbers and event waiting times, analyses of stochastic time series, and a range of additional statistical functions and plotting facilities for stochastic simulations. We illustrate the functionality of StochPy with stochastic models of gene expression, cell division, and single-molecule enzyme kinetics. StochPy has been successfully tested against the SBML stochastic test suite, passing all tests. StochPy is a comprehensive software package for stochastic simulation of the molecular control networks of living cells. It allows novice and experienced users to study stochastic phenomena in cell biology. The integration with other Python software makes StochPy both a user-friendly and easily extendible simulation tool.


Assuntos
Modelos Teóricos , Software
6.
FEBS Lett ; 587(17): 2744-52, 2013 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-23850890

RESUMO

Single enzyme molecules display inevitable, stochastic fluctuations in their catalytic activity. In metabolism, for instance, the stochastic activity of individual enzymes is averaged out due to their high copy numbers per single cell. However, many processes inside cells rely on single enzyme activity, such as transcription, replication, translation, and histone modifications. Here we introduce the main theoretical concepts of stochastic single-enzyme activity starting from the Michaelis-Menten enzyme mechanism. Next, we discuss stochasticity of multi-substrate enzymes, of enzymes and receptors with multiple conformational states and finally, how fluctuations in receptor activity arise from fluctuations in signal concentration. This paper aims to introduce the exciting field of single-molecule enzyme kinetics and stochasticity to a wider audience of biochemists and systems biologists.


Assuntos
Enzimas/química , Algoritmos , Cinética , Modelos Químicos , Receptores Acoplados a Proteínas G/química , Transdução de Sinais , Processos Estocásticos
7.
Biotechnol J ; 8(9): 997-1008, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23893965

RESUMO

Metabolic networks supply the energy and building blocks for cell growth and maintenance. Cells continuously rewire their metabolic networks in response to changes in environmental conditions to sustain fitness. Studies of the systemic properties of metabolic networks give insight into metabolic plasticity and robustness, and the ability of organisms to cope with different environments. Constraint-based stoichiometric modeling of metabolic networks has become an indispensable tool for such studies. Herein, we review the basic theoretical underpinnings of constraint-based stoichiometric modeling of metabolic networks. Basic concepts, such as stoichiometry, chemical moiety conservation, flux modes, flux balance analysis, and flux solution spaces, are explained with simple, illustrative examples. We emphasize the mathematical definitions and their network topological interpretations.


Assuntos
Redes e Vias Metabólicas , Modelos Biológicos , Algoritmos , Células/metabolismo , Simulação por Computador , Análise do Fluxo Metabólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...