Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(20): 8760-8770, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38717860

RESUMO

Sinking or floating is the natural state of planktonic organisms and particles in the ocean. Simulating these conditions is critical when making measurements, such as respirometry, because they allow the natural exchange of substrates and products between sinking particles and water flowing around them and prevent organisms that are accustomed to motion from changing their metabolism. We developed a rotating incubator, the RotoBOD (named after its capability to rotate and determine biological oxygen demand, BOD), that uniquely enables automated oxygen measurements in small volumes while keeping the samples in their natural state of suspension. This allows highly sensitive rate measurements of oxygen utilization and subsequent characterization of single particles or small planktonic organisms, such as copepods, jellyfish, or protists. As this approach is nondestructive, it can be combined with several further measurements during and after the incubation, such as stable isotope additions and molecular analyses. This makes the instrument useful for ecologists, biogeochemists, and potentially other user groups such as aquaculture facilities. Here, we present the technical background of our newly developed apparatus and provide examples of how it can be utilized to determine oxygen production and consumption in small organisms and particles.


Assuntos
Oxigênio , Oxigênio/metabolismo , Consumo de Oxigênio , Animais , Plâncton/metabolismo , Copépodes/metabolismo
2.
J Proteome Res ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690632

RESUMO

Diel rhythms are observed across taxa and are important for maintaining synchrony between the environment and organismal physiology. A striking example of this is the diel vertical migration undertaken by zooplankton, some of which, such as the 5 mm-long copepod Pleuromamma xiphias (P. xiphias), migrate hundreds of meters daily between the surface ocean and deeper waters. Some of the molecular pathways that underlie the expressed phenotype at different stages of this migration are entrained by environmental variables (e.g., day length and food availability), while others are regulated by internal clocks. We identified a series of proteomic biomarkers that vary across ocean DVM and applied them to copepods incubated in 24 h of darkness to assess circadian control. The dark-incubated copepods shared some proteomic similarities to the ocean-caught copepods (i.e., increased abundance of carbohydrate metabolism proteins at night). Shipboard-incubated copepods demonstrated a clearer distinction between night and day proteomic profiles, and more proteins were differentially abundant than in the in situ copepods, even in the absence of the photoperiod and other environmental cues. This pattern suggests that there is a canalization of rhythmic diel physiology in P. xiphias that reflects likely circadian clock control over diverse molecular pathways.

3.
Mol Ecol ; 33(6): e17284, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38258354

RESUMO

Zooplankton undergo a diel vertical migration (DVM) which exposes them to gradients of light, temperature, oxygen, and food availability on a predictable daily schedule. Disentangling the co-varying and potentially synergistic interactions on metabolic rates has proven difficult, despite the importance of this migration for the delivery of metabolic waste products to the distinctly different daytime (deep) and nighttime (surface) habitats. This study examines the transcriptomic and proteomic profiles of the circumglobal migratory copepod, Pleuromamma xiphias, over the diel cycle. The transcriptome showed that 96% of differentially expressed genes were upregulated during the middle of the day - the period often considered to be of lowest zooplankton activity. The changes in protein abundance were more spread out over time, peaking (42% of comparisons) in the early evening. Between 9:00 and 15:00, both the transcriptome and proteome datasets showed increased expression related to chitin synthesis and degradation. Additionally, at 09:00 and 22:00, there were increases in myosin and vitellogenin proteins, potentially linked to the stress of migration and/or reproductive investment. Based on protein abundances detected, there is an inferred switch in broad metabolic processes, shifting from electron transport system in the day to glycolysis and glycogen mobilization in the afternoon/evening. These observations provide evidence of the diel impact of DVM on transcriptomic and proteomic pathways that likely influence metabolic processes and subsequent excretion products, and clarify how this behaviour results in the direct rapid transport of waste metabolites from the surface to the deep ocean.


Assuntos
Copépodes , Transcriptoma , Animais , Transcriptoma/genética , Proteoma/genética , Copépodes/genética , Proteômica , Perfilação da Expressão Gênica , Zooplâncton
4.
FEMS Microbes ; 4: xtac029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333435

RESUMO

As the oligotrophic gyres expand due to global warming, exacerbating resource limitation impacts on primary producers, predicting changes to microbial assemblages and productivity requires knowledge of the community response to nutrient availability. This study examines how organic and inorganic nutrients influence the taxonomic and trophic composition (18S metabarcoding) of small eukaryotic plankton communities (< 200 µm) within the euphotic zone of the oligotrophic Sargasso Sea. The study was conducted by means of field sampling of natural microbial communities and laboratory incubation of these communities under different nutrient regimes. Dissimilarity in community composition increased along a depth gradient, with a homogeneous protist community within the mixed layer and distinct microbial assemblages at different depths below the deep chlorophyll maximum. A nutrient enrichment assay revealed the potential of natural microbial communities to rapidly shift in composition in response to nutrient addition. Results highlighted the importance of inorganic phosphorus availability, largely understudied compared to nitrogen, in constraining microbial diversity. Dissolved organic matter addition led to a loss of diversity, benefiting a limited number of phagotrophic and mixotrophic taxa. Nutrient history of the community sets the physiological responsiveness of the eukaryotic community to changing nutrient regimes and needs to be considered in future studies.

5.
Global Biogeochem Cycles ; 37(1): e2022GB007523, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37034114

RESUMO

Periodic blooms of salps (pelagic tunicates) can result in high export of organic matter, leading to an "outsized" role in the ocean's biological carbon pump (BCP). However, due to their episodic and patchy nature, salp blooms often go undetected and are rarely included in measurements or models of the BCP. We quantified salp-mediated export processes in the northeast subarctic Pacific Ocean in summer of 2018 during a bloom of Salpa aspera. Salps migrated from 300 to 750 m during the day into the upper 100 m at night. Salp fecal pellet production comprised up to 82% of the particulate organic carbon (POC) produced as fecal pellets by the entire epipelagic zooplankton community. Rapid sinking velocities of salp pellets (400-1,200 m d-1) and low microbial respiration rates on pellets (<1% of pellet C respired day-1) led to high salp pellet POC export from the euphotic zone-up to 48% of total sinking POC across the 100 m depth horizon. Salp active transport of carbon by diel vertical migration and carbon export from sinking salp carcasses was usually <10% of the total sinking POC flux. Salp-mediated export markedly increased BCP efficiency, increasing by 1.5-fold the proportion of net primary production exported as POC across the base of the euphotic zone and by 2.6-fold the proportion of this POC flux persisting 100 m below the euphotic zone. Salps have unique and important effects on ocean biogeochemistry and, especially in low flux settings, can dramatically increase BCP efficiency and thus carbon sequestration.

6.
Integr Comp Biol ; 61(5): 1579-1593, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34410363

RESUMO

In drag-based swimming, individual propulsors operating at low Reynolds numbers (where viscous forces dominate over inertial forces) must execute a spatially asymmetric stroke to produce net fluid displacement. Temporal asymmetry (that is, differing duration between the power vs. recovery stroke) does not affect the overall generated thrust in this time-reversible regime. Metachronal rowing, in which multiple appendages beat sequentially, is used by a wide variety of organisms from low to intermediate Reynolds numbers. At the upper end of this range, inertia becomes important, and increasing temporal asymmetry can be an effective way to increase thrust. However, the combined effects of spatial and temporal asymmetry are not fully understood in the context of metachronal rowing. To explore the role of spatiotemporal asymmetry in metachronal rowing, we combine laboratory experiments and reduced-order analytical modeling. We measure beat kinematics and generated flows in two species of lobate ctenophores across a range of body sizes, from 7 to 40 mm in length. We observe characteristically different flows in ctenophores of differing body size and Reynolds number, and a general decrease in spatial asymmetry and increase in temporal asymmetry with increasing Reynolds number. We also construct a one-dimensional mathematical model consisting of a row of oscillating flat plates whose flow-normal areas change with time, and use it to explore the propulsive forces generated across a range of Reynolds numbers and kinematic parameters. The model results show that while both types of asymmetry increase force production, they have different effects in different regions of the parameter space. These results may have strong biological implications, as temporal asymmetry can be actively controlled while spatial asymmetry is likely to be partially or entirely driven by passive fluid-structure interaction.


Assuntos
Extremidades , Natação , Animais , Fenômenos Biomecânicos , Tamanho Corporal , Modelos Teóricos
7.
Proc Natl Acad Sci U S A ; 117(41): 25609-25617, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32973093

RESUMO

Pteropods are a group of planktonic gastropods that are widely regarded as biological indicators for assessing the impacts of ocean acidification. Their aragonitic shells are highly sensitive to acute changes in ocean chemistry. However, to gain insight into their potential to adapt to current climate change, we need to accurately reconstruct their evolutionary history and assess their responses to past changes in the Earth's carbon cycle. Here, we resolve the phylogeny and timing of pteropod evolution with a phylogenomic dataset (2,654 genes) incorporating new data for 21 pteropod species and revised fossil evidence. In agreement with traditional taxonomy, we recovered molecular support for a division between "sea butterflies" (Thecosomata; mucus-web feeders) and "sea angels" (Gymnosomata; active predators). Molecular dating demonstrated that these two lineages diverged in the early Cretaceous, and that all main pteropod clades, including shelled, partially-shelled, and unshelled groups, diverged in the mid- to late Cretaceous. Hence, these clades originated prior to and subsequently survived major global change events, including the Paleocene-Eocene Thermal Maximum (PETM), the closest analog to modern-day ocean acidification and warming. Our findings indicate that planktonic aragonitic calcifiers have shown resilience to perturbations in the Earth's carbon cycle over evolutionary timescales.


Assuntos
Evolução Biológica , Ciclo do Carbono/fisiologia , Mudança Climática , Gastrópodes , Plâncton , Animais , Calcificação Fisiológica/fisiologia , Fósseis , Gastrópodes/classificação , Gastrópodes/genética , Gastrópodes/fisiologia , Concentração de Íons de Hidrogênio , Filogenia , Plâncton/classificação , Plâncton/genética , Plâncton/fisiologia
8.
J Exp Biol ; 223(Pt 15)2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32587067

RESUMO

The clap-and-fling mechanism is a well-studied, unsteady lift generation mechanism widely used by flying insects and is considered obligatory for tiny insects flying at low to intermediate Reynolds numbers, Re However, some aquatic zooplankters including some pteropod (i.e. sea butterfly) and heteropod species swimming at low to intermediate Re also use the clap-and-fling mechanism. These marine snails have extremely flexible, actively deformed, muscular wings which they flap reciprocally to create propulsive force, and these wings may enable novel lift generation mechanisms not available to insects, which have less flexible, passively deformed wings. Using high-speed stereophotogrammetry and micro-particle image velocimetry, we describe a novel cylindrical overlap-and-fling mechanism used by the pteropod species Cuvierina atlantica In this maneuver, the pteropod's wingtips overlap at the end of each half-stroke to sequentially form a downward-opening cone, a cylinder and an upward-opening cone. The transition from downward-opening cone to cylinder produces a downward-directed jet at the trailing edges. Similarly, the transition from cylinder to upward-opening cone produces downward flow into the gap between the wings, a leading edge vortex ring and a corresponding sharp increase in swimming speed. The ability of this pteropod species to perform the cylindrical overlap-and-fling maneuver twice during each stroke is enabled by its slender body and highly flexible wings. The cylindrical overlap-and-fling mechanism observed here may inspire the design of new soft robotic aquatic vehicles incorporating highly flexible propulsors to take advantage of this novel lift generation technique.


Assuntos
Borboletas , Voo Animal , Animais , Fenômenos Biomecânicos , Insetos , Modelos Biológicos , Asas de Animais
9.
J Exp Biol ; 221(Pt 23)2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30348646

RESUMO

Atlantiid heteropods are zooplanktonic marine snails which have a calcium carbonate shell and single swimming fin. They actively swim to hunt prey and vertically migrate. Previous accounts of atlantiid heteropod swimming described these animals sculling with the swimming fin while the shell passively hung beneath the body. Here, we show, via high-speed stereophotogrammetric measurements of body, fin and shell kinematics, that the atlantiid heteropod Atlanta selvagensis actively flaps both the swimming fin and shell in a highly coordinated wing-like manner in order to swim in the intermediate Reynolds number regime (Re=10-100). The fin and shell kinematics indicate that atlantiid heteropods use unsteady hydrodynamic mechanisms such as clap-and-fling and delayed stall. Unique features of atlantiid heteropod swimming include the coordinated pairing of dissimilar appendages, use of the clap and fling mechanism twice during each stroke cycle, and the fin's extremely large stroke amplitude, which exceeds 180 deg.


Assuntos
Nadadeiras de Animais/fisiologia , Exoesqueleto , Gastrópodes/fisiologia , Natação/fisiologia , Animais , Fenômenos Biomecânicos , Gravação em Vídeo/métodos , Zooplâncton
10.
Biol Bull ; 235(1): 30-42, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30160998

RESUMO

The diel vertical migration of zooplankton is a process during which individuals spend the night in surface waters and retreat to depth during the daytime, with substantial implications for carbon transport and the ecology of midwater ecosystems. The physiological consequences of this daily pattern have, however, been poorly studied beyond investigations of speed and the energetic cost of swimming. Many other processes are likely influenced, such as fuel use, energetic trade-offs, underlying diel (circadian) rhythms, and antioxidant responses. Using a new reference transcriptome, proteomic analyses were applied to compare the physiological state of a migratory copepod, Pleuromamma xiphias, immediately after arriving to the surface at night and six hours later. Oxygen consumption was monitored semi-continuously to explore underlying cyclical patterns in metabolic rate under dark-dark conditions. The proteomic analysis suggests a distinct shift in physiology that reflects migratory exertion and changes in metabolism. These proteomic analyses are supported by the respiration experiments, which show an underlying cycle in metabolic rate, with a peak at dawn. This project generates molecular tools (transcriptome and proteome) that will allow for more detailed understanding of the underlying physiological processes that influence and are influenced by diel vertical migration. Further, these studies suggest that P. xiphias is a tractable model for continuing investigations of circadian and diel vertical migration influences on plankton physiology. Previous studies did not account for this cyclic pattern of respiration and may therefore have unrepresented respiratory carbon fluxes from copepods by about 24%.


Assuntos
Migração Animal/fisiologia , Ritmo Circadiano/fisiologia , Copépodes/genética , Copépodes/metabolismo , Consumo de Oxigênio/fisiologia , Proteoma , Animais
11.
Mar Genomics ; 38: 25-32, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28601440

RESUMO

The northern krill, Meganyctiphanes norvegica, is an important component of the pelagic food web across the North Atlantic. Widespread from the Mediterranean to the Subarctic Atlantic, populations appear to be strongly adapted to local temperatures, and seem to have very little plasticity. The goal of this study was to create and annotate a de novo transcriptome assembly to allow for comparative and physiological studies and to explore the gene expression response of M. norvegica from the Gulf of Maine to two different temperature conditions. Our Trinity assembly produced 405,497 transcripts with ~16% annotation success versus nr with a stringent cutoff (>1e-10), and substantial cross-annotation versus FlyBase and other published pelagic crustacean transcriptomes. There were 122 transcripts that were differentially expressed based on our 2-day 9 versus 12°C temperature exposure, and their annotation suggested changes in energetic metabolism and molting. These results generate a useful molecular resource for further more directed studies as well as provide initial insight into the physiological processes that may shape the temperature response of the northern krill.


Assuntos
Euphausiacea/genética , Transcriptoma , Animais , Oceano Atlântico , Anotação de Sequência Molecular , Água do Mar , Temperatura
12.
J Exp Biol ; 221(Pt 3)2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29191863

RESUMO

Thecosomatous pteropods, a group of aragonite shell-bearing zooplankton, are becoming an important sentinel organism for understanding the influence of ocean acidification on pelagic organisms. These animals show vulnerability to changing carbonate chemistry conditions, are geographically widespread, and are both biogeochemically and trophically important. The objective of this study was to determine how increasing duration and severity of CO2 treatment influence the physiology of the thecosome Limacina retroversa, integrating both gene expression and organism-level (respiration and calcification) metrics. We exposed pteropods to over-saturated, near-saturated or under-saturated conditions and sampled individuals at 1, 3, 7, 14 and 21 days of exposure to test for the effect of duration. We found that calcification was affected by borderline and under-saturated conditions by week two, while respiration appeared to be more strongly influenced by an interaction between severity and duration of exposure, showing complex changes by one week of exposure. The organismal metrics were corroborated by specific gene expression responses, with increased expression of biomineralization-associated genes in the medium and high treatments throughout and complex changes in metabolic genes corresponding to both captivity and CO2 treatment. Genes associated with other physiological processes such as lipid metabolism, neural function and ion pumping had complex responses, influenced by both duration and severity. Beyond these responses, our findings detail the captivity effects for these pelagic organisms, providing information to contextualize the conclusions of previous studies, and emphasizing a need for better culturing protocols.


Assuntos
Calcificação Fisiológica , Dióxido de Carbono/metabolismo , Gastrópodes/fisiologia , Transcriptoma , Animais , Mudança Climática , Gastrópodes/genética , Respiração , Fatores de Tempo
13.
Mar Genomics ; 34: 39-45, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28385518

RESUMO

The gymnosome (unshelled) pteropod Clione limacina is a pelagic predatory mollusc found in polar and sub-polar regions. It has been studied for its distinctive swimming behavior and as an obligate predator on the closely related thecosome (shelled) pteropods. As concern about ocean acidification increases, it becomes useful to compare the physiological responses of closely-related calcifying and non-calcifying species to acidification. The goals of this study were thus to generate a reference transcriptome for Clione limacina, to expose individuals to CO2 for a period of 3days, and to explore differential patterns of gene expression. Our Trinity assembly contained 300,994 transcripts of which ~26% could be annotated. In total, only 41 transcripts were differentially expressed following the CO2 treatment, consistent with a limited physiological response of this species to short-term CO2 exposure. The differentially expressed genes identified in our study were largely distinct from those identified in previous studies of thecosome pteropods, although some similar transcripts were identified, suggesting that comparison of these transcriptomes and responses may provide insight into differences in responses to ocean acidification among phylogenetically and functionally distinct molluscan lineages.


Assuntos
Dióxido de Carbono/metabolismo , Clione/genética , Clione/metabolismo , Transcriptoma , Animais , Concentração de Íons de Hidrogênio , Água do Mar/química
14.
Biol Open ; 5(2): 161-4, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26772201

RESUMO

In bilaterian animals, the circadian clock is intimately involved in regulating energetic metabolism. Although cnidarians exhibit diel behavioral rhythms including cycles in locomotor activity, tentacle extension and spawning, daily cycles in cnidarian metabolism have not been described. To explore a possible circadian metabolic cycle, we maintained the anemone Nematostella vectensis in a 12 h light/dark cycle, a reversed light cycle, or in constant darkness. Oxygen consumption rates were measured at intervals using an optical oxygen meter. Respiration rates responded to entrainment with higher rates during light periods. During a second experiment with higher temporal resolution, respiration rates peaked late in the light period. The diel pattern could be detected after six days in constant darkness. Together, our results suggest that respiration rates in Nematostella exhibit a daily cycle that may be under circadian control and that the cycle in respiration rate is not driven by the previously described nocturnal increase in locomotor activity in this species.

15.
Artigo em Inglês | MEDLINE | ID: mdl-26143042

RESUMO

Thecosome pteropods, a group of calcifying holoplanktonic mollusks, have recently become a research focus due to their potential sensitivity to increased levels of anthropogenic dissolved CO2 in seawater and the accompanying ocean acidification. Some populations, however, already experience high CO2 in their natural distribution during diel vertical migrations. To achieve a better understanding of the mechanisms of pteropod calcification and physiological response to this sort of short duration CO2 exposure, we characterized the gene complement of Clio pyramidata, a cosmopolitan diel migratory thecosome, and investigated its transcriptomic response to experimentally manipulated CO2 conditions. Individuals were sampled from the Northwest Atlantic in the fall of 2011 and exposed to ambient conditions (~380ppm) and elevated CO2 (~800ppm, similar to levels experienced during a diel vertical migration) for ~10h. Following this exposure the respiration rate of the individuals was measured. We then performed RNA-seq analysis, assembled the C. pyramidata transcriptome de novo, annotated the genes, and assessed the differential gene expression patterns in response to exposure to elevated CO2. Within the transcriptome, we identified homologs of genes with known roles in biomineralization in other mollusks, including perlucin, calmodulin, dermatopontin, calponin, and chitin synthases. Respiration rate was not affected by short-term exposure to CO2. Gene expression varied greatly among individuals, and comparison between treatments indicated that C. pyramidata down-regulated a small number of genes associated with aerobic metabolism and up-regulated genes that may be associated with biomineralization, particularly collagens and C-type lectins. These results provide initial insight into the effects of short term CO2 exposure on these important planktonic open-ocean calcifiers, pairing respiration rate and the gene expression level of response, and reveal candidate genes for future ecophysiological, biomaterial and phylogenetic studies.


Assuntos
Dióxido de Carbono/metabolismo , Gastrópodes/genética , Gastrópodes/fisiologia , Transcriptoma , Sequência de Aminoácidos , Animais , Calcificação Fisiológica , Dióxido de Carbono/análise , Gastrópodes/química , Regulação da Expressão Gênica , Lectinas Tipo C/química , Lectinas Tipo C/genética , Dados de Sequência Molecular , Filogenia , Respiração , Água do Mar/análise , Alinhamento de Sequência
16.
PLoS One ; 8(1): e53889, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23335979

RESUMO

Thecosome pteropods (Mollusca, Gastropoda) are an ecologically important, diverse, and ubiquitous group of holoplanktonic animals that are the focus of intense research interest due to their external aragonite shell and vulnerability to ocean acidification. Characterizing the response of these animals to low pH and other environmental stressors has been hampered by continued uncertainty in their taxonomic identification. An example of this confusion in species assignment is found in the genus Diacavolinia. All members of this genus were originally indentified as a single species, Cavolinia longirostris, but over the past fifty years the taxonomy has been revisited multiple times; currently the genus comprises 22 different species. This study examines five species of Diacavolinia, including four sampled in the Northeast Atlantic (78 individuals) and one from the Eastern tropical North Pacific (15 individuals). Diacavolina were identified to species based on morphological characteristics according to the current taxonomy, photographed, and then used to determine the sequence of the "DNA barcoding" region of the cytochrome c oxidase subunit I (COI). Specimens from the Atlantic, despite distinct differences in shell morphology, showed polyphyly and a genetic divergence of <3% (K2P distance) whereas the Pacific and Atlantic samples were more distant (≈ 19%). Comparisons of Diacavolinia spp. with other Cavolinia spp. reveal larger distances (≈ 24%). These results indicate that specimens from the Atlantic comprise a single monophyletic species and suggest possible species-level divergence between Atlantic and Pacific populations. The findings support the maintenance of Diacavolinia as a separate genus, yet emphasize the inadequacy of our current taxonomic understanding of pteropods. They highlight the need for accurate species identifications to support estimates of biodiversity, range extent and natural exposure of these planktonic calcifiers to environmental variability; furthermore, the apparent variation of the pteropods shell may have implications for our understanding of the species' sensitivity to ocean acidification.


Assuntos
Código de Barras de DNA Taxonômico , Gastrópodes/classificação , Gastrópodes/genética , Animais , Análise por Conglomerados , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Evolução Molecular , Gastrópodes/anatomia & histologia , Haplótipos , Dados de Sequência Molecular , Filogenia
17.
PLoS One ; 7(4): e30464, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22536312

RESUMO

Ocean acidification, caused by elevated seawater carbon dioxide levels, may have a deleterious impact on energetic processes in animals. Here we show that high PCO(2) can suppress metabolism, measured as oxygen consumption, in the pteropod, L. helicina forma antarctica, by ∼20%. The rates measured at 180-380 µatm (MO(2)  =  1.25 M(-0.25), p  =  0.007) were significantly higher (ANCOVA, p  =  0.004) than those measured at elevated target CO(2) levels in 2007 (789-1000 µatm,  =  0.78 M(-0.32), p  =  0.0008; Fig. 1). However, we further demonstrate metabolic plasticity in response to regional phytoplankton concentration and that the response to CO(2) is dependent on the baseline level of metabolism. We hypothesize that reduced regional Chl a levels in 2008 suppressed metabolism and masked the effect of ocean acidification. This effect of food limitation was not, we postulate, merely a result of gut clearance and specific dynamic action, but rather represents a sustained metabolic response to regional conditions. Thus, pteropod populations may be compromised by climate change, both directly via CO(2)-induced metabolic suppression, and indirectly via quantitative and qualitative changes to the phytoplankton community. Without the context provided by long-term observations (four seasons) and a multi-faceted laboratory analysis of the parameters affecting energetics, the complex response of polar pteropods to ocean acidification may be masked or misinterpreted.


Assuntos
Dióxido de Carbono/química , Gastrópodes/metabolismo , Água do Mar/química , Animais , Regiões Antárticas , Peso Corporal , Carbonatos/química , Metabolismo Energético , Concentração de Íons de Hidrogênio , Oceanos e Mares , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...