Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Pharmacol Drug Dev ; 11(11): 1294-1307, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36029150

RESUMO

Acalabrutinib is a Bruton tyrosine kinase (BTK) inhibitor approved to treat adults with chronic lymphocytic leukemia, small lymphocytic lymphoma, or previously treated mantle cell lymphoma. As the bioavailability of the acalabrutinib capsule (AC) depends on gastric pH for solubility and is impaired by acid-suppressing therapies, coadministration with proton-pump inhibitors (PPIs) is not recommended. Three studies in healthy subjects (N = 30, N = 66, N = 20) evaluated the pharmacokinetics (PKs), pharmacodynamics (PDs), safety, and tolerability of acalabrutinib maleate tablet (AT) formulated with pH-independent release. Subjects were administered AT or AC (orally, fasted state), AT in a fed state, or AT in the presence of a PPI, and AT or AC via nasogastric (NG) route. Acalabrutinib exposures (geometric mean [% coefficient of variation, CV]) were comparable for AT versus AC (AUCinf 567.8 ng h/mL [36.9] vs 572.2 ng h/mL [38.2], Cmax 537.2 ng/mL [42.6] vs 535.7 ng/mL [58.4], respectively); similar results were observed for acalabrutinib's active metabolite (ACP-5862) and for AT-NG versus AC-NG. The geometric mean Cmax for acalabrutinib was lower when AT was administered in the fed versus the fasted state (Cmax 255.6 ng/mL [%CV, 46.5] vs 504.9 ng/mL [49.9]); AUCs were similar. For AT + PPI, geometric mean Cmax was lower (371.9 ng/mL [%CV, 81.4] vs 504.9 ng/mL [49.9]) and AUCinf was higher (AUCinf 694.1 ng h/mL [39.7] vs 559.5 ng h/mL [34.6]) than AT alone. AT and AC were similar in BTK occupancy. Most adverse events were mild with no new safety concerns. Acalabrutinib formulations were comparable and AT could be coadministered with PPIs, food, or via NG tube without affecting the PKs or PDs.


Assuntos
Inibidores da Bomba de Prótons , Pirazinas , Adulto , Humanos , Disponibilidade Biológica , Equivalência Terapêutica , Inibidores da Bomba de Prótons/efeitos adversos , Inibidores da Bomba de Prótons/farmacocinética , Pirazinas/efeitos adversos , Pirazinas/farmacocinética , Comprimidos , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética
2.
Biochemistry ; 46(10): 2899-908, 2007 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-17298035

RESUMO

LEDGF/p75 is known to enhance the integrase strand transfer activity in vitro, but the underlying mechanism is unclear. Using an integrase assay with a chemiluminescent readout adapted to a 96-well plate format, the effect of LEDGF/p75 on both the 3'-processing and strand transfer steps was analyzed. Integrase inhibitors of the strand transfer reaction remained active in the presence of LEDGF/p75, but displayed 3- to 7-fold higher IC50 values. Our analyses indicate that, in the presence of 150 nM LEDGF/p75, active integrase/donor DNA complexes were increased by 5.3-fold during the 3'-processing step. In addition, these integrase/donor DNA complexes showed a 4.5-fold greater affinity for the target DNA during the subsequent strand transfer step. We also observed a 3.7-fold increase in the rate constant of catalysis of the strand transfer step when 150 nM LEDGF/p75 was present during the 3'-processing step. In contrast, when LEDGF/p75 was added at the beginning of the strand transfer step, no increase in either the concentration of active integrase/donor DNA complex or its rate constant of strand transfer catalysis was observed. This observation suggested that the integrase/donor DNA formed in the absence of LEDGF/p75 became refractory to the stimulatory effect of LEDGF/p75. Instead, this LEDGF/p75 added at the start of the strand transfer step was able to promote the formation of a new cohort of active integrase/donor DNA complexes which became functional with a delay of 45 min after LEDGF/p75 addition. We propose a model whereby LEDGF/p75 can only bind integrase before the latter binds donor DNA whereas donor DNA can engage either free or LEDGF/p75-bound integrase.


Assuntos
DNA/metabolismo , Integrase de HIV/metabolismo , HIV-1/enzimologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , DNA/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Substâncias Macromoleculares/metabolismo
3.
Antivir Chem Chemother ; 18(6): 307-16, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18320935

RESUMO

The HIV-1 reverse transcriptase (RT) resistance mutations K65R and M184V occur individually and in combination, and can contribute to decreased treatment responses in patients. In order to understand how these mutations interact with one another to confer drug resistance, the susceptibilities and underlying resistance mechanisms of these mutants to nucleoside RT inhibitors (NRTIs) were determined. Virus carrying K65R have reduced susceptibility to most NRTIs, but retain full susceptibility to zidovudine (AZT). M184V mutants have reduced susceptibility to lamivudine (3TC), emtricitabine (FTC) and didanosine (ddl), and contribute to reduced susceptibility to abacavir; however, they remain fully susceptible to tenofovir (TFV), AZT and stavudine (d4T). In cell culture, the K65R+M184V virus showed slightly increased susceptibility to TFV, AZT and d4T compared with K65R alone, but showed further decreases in susceptibility to 3TC, FTC, ddl and abacavir. There are two major biochemical mechanisms of resistance: altered NRTI binding/incorporation and altered NRTI excision after incorporation. For most NRTIs, the primary mechanism of resistance by K65R, M184V and K65R+M184V mutant RTs is to disrupt the NRTI-binding/incorporation steps. In the case of AZT, however, decreased binding/incorporation by K65R and K65R+M184V was counteracted by decreased AZT excision resulting in wild-type susceptibility. For TFV, decreased excision by K65R and K65R+M184V may partially counteract the K65R-driven decrease in incorporation relative to wild-type resulting in only low levels of TFV resistance. The K65R-mediated effect on decreasing NRTI excision was stronger than for M184V. These studies show that both mechanisms of resistance (binding/incorporation and excision) must be considered when defining resistance mechanisms.


Assuntos
Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Transcriptase Reversa do HIV/genética , HIV-1/enzimologia , HIV-1/genética , Mutação , Nucleosídeos/metabolismo , Inibidores da Transcriptase Reversa/farmacologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Infecções por HIV/virologia , Transcriptase Reversa do HIV/metabolismo , Humanos , Cinética , Inibidores da Transcriptase Reversa/metabolismo
4.
Antivir Ther ; 11(2): 155-63, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16640096

RESUMO

The HIV-1 nucleoside reverse transcriptase inhibitors (NRTIs) tenofovir (TFV), abacavir, didanosine and stavudine can select for K65R, whereas zidovudine (AZT) and stavudine can select for thymidine analogue mutations (TAMs) in HIV-1 reverse transcriptase (RT). HIV-1 with TAMs shows reduced susceptibility to all NRTIs, most notably AZT, whereas HIV-1 with K65R shows reduced susceptibility to all NRTIs except AZT. K65R and TAMs rarely occur together in patients. However, when present together, K65R can restore susceptibility to AZT. This study characterizes the underlying mechanisms of resistance of these RT mutants to TFV and AZT. K65R mediated decreased binding/incorporation of TFV and AZT (increased Ki/Km of 7.1- and 4.3-fold, respectively), but also decreased excision of TFV and AZT (0.7- and 0.3-fold, respectively) when compared with wild-type RT. By contrast, TAMs mediated increased TFV and AZT excision (11- and 5.4-fold, respectively), and showed no changes in binding/incorporation. When these mutations were combined, K65R reversed TAM-mediated AZT resistance by strongly reducing AZT excision. Molecular modelling studies suggest that K65R creates additional hydrogen bonds that reduce the conformational mobility of RT, resulting in reduced polymerization and excision. Thus, consistent with clinical HIV-1 genotyping data, there appears to be no net NRTI resistance benefit for TAMs and K65R to develop together in patients taking AZT and TFV disoproxil fumarate, where the TAM pathway alone provides the greatest resistance for both drugs.


Assuntos
Farmacorresistência Viral/genética , Transcriptase Reversa do HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Mutação/genética , Zidovudina/farmacologia , Linhagem Celular , HIV-1/genética , Humanos , Modelos Moleculares , Fenótipo , Ligação Proteica , Inibidores da Transcriptase Reversa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...