Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38715364

RESUMO

Current coronavirus disease 2019 vaccines face limitations including waning immunity, immune escape by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, limited cellular response, and poor mucosal immunity. We engineered a Clec9A-receptor binding domain (RBD) antibody construct that delivers the SARS-CoV-2 RBD to conventional type 1 dendritic cells. Compared with non-targeting approaches, single dose immunization in mice with Clec9A-RBD induced far higher RBD-specific antibody titers that were sustained for up to 21 months after vaccination. Uniquely, increasing neutralizing and antibody-dependent cytotoxicity activities across the sarbecovirus family was observed, suggesting antibody affinity maturation over time. Consistently and remarkably, RBD-specific follicular T helper cells and germinal center B cells persisted up to 12 months after immunization. Furthermore, Clec9A-RBD immunization induced a durable mono- and poly-functional T-helper 1-biased cellular response that was strongly cross-reactive against SARS-CoV-2 variants of concern, including Omicron subvariants, and with a robust CD8+ T cell signature. Uniquely, Clec9A-RBD single-shot systemic immunization effectively primed RBD-specific cellular and humoral immunity in lung and resulted in significant protection against homologous SARS-CoV-2 challenge as evidenced by limited body weight loss and approximately 2 log10 decrease in lung viral loads compared with non-immunized controls. Therefore, Clec9A-RBD immunization has the potential to trigger robust and sustained, systemic and mucosal protective immunity against rapidly evolving SARS-CoV2 variants.

2.
Rheumatology (Oxford) ; 63(2): 551-562, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37341646

RESUMO

OBJECTIVES: Platelets and low-density neutrophils (LDNs) are major players in the immunopathogenesis of SLE. Despite evidence showing the importance of platelet-neutrophil complexes (PNCs) in inflammation, little is known about the relationship between LDNs and platelets in SLE. We sought to characterize the role of LDNs and Toll-like receptor 7 (TLR7) in clinical disease. METHODS: Flow cytometry was used to immunophenotype LDNs from SLE patients and controls. The association of LDNs with organ damage was investigated in a cohort of 290 SLE patients. TLR7 mRNA expression was assessed in LDNs and high-density neutrophils (HDNs) using publicly available mRNA sequencing datasets and our own cohort using RT-PCR. The role of TLR7 in platelet binding was evaluated in platelet-HDN mixing studies using TLR7-deficient mice and Klinefelter syndrome patients. RESULTS: SLE patients with active disease have more LDNs, which are heterogeneous and more immature in patients with evidence of kidney dysfunction. LDNs are platelet bound, in contrast to HDNs. LDNs settle in the peripheral blood mononuclear cell (PBMC) layer due to the increased buoyancy and neutrophil degranulation from platelet binding. Mixing studies demonstrated that this PNC formation was dependent on platelet-TLR7 and that the association results in increased NETosis. The neutrophil:platelet ratio is a useful clinical correlate for LDNs, and a higher NPR is associated with past and current flares of LN. CONCLUSIONS: LDNs sediment in the upper PBMC fraction due to PNC formation, which is dependent on the expression of TLR7 in platelets. Collectively, our results reveal a novel TLR7-dependent crosstalk between platelets and neutrophils that may be an important therapeutic opportunity for LN.


Assuntos
Nefrite Lúpica , Neutrófilos , Animais , Humanos , Camundongos , Leucócitos Mononucleares , Nefrite Lúpica/patologia , Neutrófilos/metabolismo , RNA Mensageiro/metabolismo , Receptor 7 Toll-Like/genética
3.
Nat Commun ; 14(1): 6967, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37907459

RESUMO

The changing landscape of SARS-CoV-2 Spike protein is linked to the emergence of variants, immune-escape and reduced efficacy of the existing repertoire of anti-viral antibodies. The functional activity of neutralizing antibodies is linked to their quaternary changes occurring as a result of antibody-Spike trimer interactions. Here, we reveal the conformational dynamics and allosteric perturbations linked to binding of novel human antibodies and the viral Spike protein. We identified epitope hotspots, and associated changes in Spike dynamics that distinguish weak, moderate and strong neutralizing antibodies. We show the impact of mutations in Wuhan-Hu-1, Delta, and Omicron variants on differences in the antibody-induced conformational changes in Spike and illustrate how these render certain antibodies ineffective. Antibodies with similar binding affinities may induce destabilizing or stabilizing allosteric effects on Spike, with implications for neutralization efficacy. Our results provide mechanistic insights into the functional modes and synergistic behavior of human antibodies against COVID-19 and may assist in designing effective antiviral strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Testes de Neutralização
4.
Immunohorizons ; 7(10): 708-717, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37889158

RESUMO

COVID-19 vaccination has significantly impacted the global pandemic by reducing the severity of infection, lowering rates of hospitalization, and reducing morbidity/mortality in healthy individuals. However, the degree of vaccine-induced protection afforded to renal transplant recipients who receive forms of maintenance immunosuppression remains poorly defined. This is particularly important when we factor in the emergence of SARS-CoV-2 variants of concern (VOCs) that have defined mutations that reduce the effectiveness of Ab responses targeting the Spike Ags from the ancestral Wuhan-Hu-1 variants employed in the most widely used vaccine formats. In this study, we describe a qualitative, longitudinal analysis of neutralizing Ab responses against multiple SARS-CoV-2 VOCs in 129 renal transplant recipients who have received three doses of the Pfizer-BioNTech COVID-19 vaccine (BNT162b2). Our results reveal a qualitative and quantitative reduction in the vaccine-induced serological response in transplant recipients versus healthy controls where only 51.9% (67 of 129) made a measurable vaccine-induced IgG response and 41.1% (53 of 129) exhibited a significant neutralizing Ab titer (based on a pseudovirus neutralization test value >50%). Analysis on the VOCs revealed strongest binding toward the wild-type Wuhan-Hu-1 and Delta variants but none with both of the Omicron variants tested (BA1 and BA2). Moreover, older transplant recipients and those who are on mycophenolic acid as part of their maintenance therapy exhibited a profound reduction in all of the analyzed vaccine-induced immune correlates. These data have important implications for how we monitor and manage transplant patients in the future as COVID-19 becomes endemic in our populations.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Vacina BNT162 , Transplantados , COVID-19/prevenção & controle , SARS-CoV-2
5.
J Pediatric Infect Dis Soc ; 10(3): 345-348, 2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32448891

RESUMO

We report on 2 Asian siblings with X-linked inhibitor of apoptosis deficiency that arose from a novel deletion that presented with Epstein-Barr virus disease and hemophagocytic lymphohistiocytosis. This disease is ascribed to dysfunction in the nucleotide binding and oligomerization domain receptor pathway, tested using a modified muramyl dipeptide-mediated assay.


Assuntos
Infecções por Vírus Epstein-Barr , Linfo-Histiocitose Hemofagocítica , Transtornos Linfoproliferativos , Apoptose , Herpesvirus Humano 4/genética , Humanos
6.
Cytometry A ; 95(3): 268-278, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30549398

RESUMO

Neutrophil extracellular traps (NETs) are web-like structures composed of decondensed chromatin and antimicrobial proteins that are released into the extracellular space during microbial infections. This active cell death program is known as NETosis. To date, florescence microscopy is the widely accepted method for visualization and quantification of NETs. However, this method is subjective, time consuming and yields low numbers of analyzed polymorphonuclear cells (PMNs) per sample. Increasing interest has emerged on the identification of NETs using flow cytometry techniques. However, flow cytometry analysis of NETs requires particular precautions for sample preparation to obtain reproducible data. Herein, we describe a flow cytometry-based assay for high-throughput detection and quantification of NETosis in mixed cell populations. We used fluorescent-labeled antibodies against cell markers on PMNs together with a combination of nucleic acid stains to measure NETosis in whole blood (WB) and purified PMNs. Using plasma membrane-impermeable DNA-binding dye, SYTOX Orange (SO), we found that cell-appendant DNA of NETting PMNs were positive for SO and DAPI. The combination of optimally diluted antibody and nucleic acid dyes required no washing and yielded low background fluorescence. Significant correlations were found for NETosis from WB and purified PMNs. We then validated the assay by comparing with time-lapse live cell fluorescence microscopy and determined very good intraassay and interassay variances. The assay was then applied to a disease associated with NETosis, systemic lupus erythematosus (SLE). We examined PMA-induced NETosis in peripheral PMNs from SLE patients and controls and in bone marrow PMNs from multiple murine models. In summary, this assay is observer-independent and allows for rapid assessment of a large number of PMNs per sample. Use of this assay does not require sophisticated microscopic equipment like imaging flow cytometers and may be a starting point to analyze extracellular trap formation from immune cells other than PMNs. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Assuntos
Armadilhas Extracelulares/metabolismo , Citometria de Fluxo/métodos , Imunofluorescência/métodos , Microscopia de Fluorescência/métodos , Neutrófilos/metabolismo , Animais , Células da Medula Óssea/metabolismo , DNA/análise , DNA/química , Modelos Animais de Doenças , Armadilhas Extracelulares/química , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Morte Celular Regulada/efeitos dos fármacos , Morte Celular Regulada/genética
7.
Sci Rep ; 5: 8235, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25648885

RESUMO

The Type VI Secretion System cluster 1 (T6SS1) is essential for the pathogenesis of Burkholderia pseudomallei, the causative agent of melioidosis, a disease endemic in the tropics. Inside host cells, B. pseudomallei escapes into the cytosol and through T6SS1, induces multinucleated giant cell (MNGC) formation that is thought to be important for bacterial cell to cell spread. The hemolysin-coregulated protein (Hcp) is both a T6SS substrate, as well as postulated to form part of the T6SS secretion tube. Our structural study reveals that Hcp1 forms hexameric rings similar to the other Hcp homologs but has an extended loop (Asp40-Arg56) that deviates significantly in position compared to other Hcp structures and may act as a key contact point between adjacent hexameric rings. When two residues within the loop were mutated, the mutant proteins were unable to stack as dodecamers, suggesting defective tube assembly. Moreover, infection with a bacterial mutant containing in situ substitution of these hcp1 residues abolishes Hcp1 secretion inside infected cells and MNGC formation. We further show that Hcp has the ability to preferentially bind to the surface of antigen-presenting cells, which may contribute to its immunogenicity in inducing high titers of antibodies seen in melioidosis patients.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Burkholderia pseudomallei/fisiologia , Domínios e Motivos de Interação entre Proteínas , Sistemas de Secreção Tipo VI , Sequência de Aminoácidos , Animais , Anticorpos Antibacterianos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Linhagem Celular , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Melioidose/imunologia , Melioidose/microbiologia , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes/metabolismo
8.
Sci Rep ; 3: 3232, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24240815

RESUMO

Epstein-Barr virus (EBV) is a gamma herpesvirus that causes a life-long latent infection in human hosts. The latent gene products LMP1, LMP2A and EBNA1 are expressed by EBV-associated tumors and peptide epitopes derived from these can be targeted by CD8 Cytotoxic T-Lymphocyte (CTL) lines. Whilst CTL-based methodologies can be utilized to infer the presence of specific latent epitopes, they do not allow a direct visualization or quantitation of these epitopes. Here, we describe the characterization of three TCR-like monoclonal antibodies (mAbs) targeting the latent epitopes LMP1(125-133), LMP2A(426-434) or EBNA1(562-570) in association with HLA-A0201. These are employed to map the expression hierarchy of endogenously generated EBV epitopes. The dominance of EBNA1(562-570) in association with HLA-A0201 was consistently observed in cell lines and EBV-associated tumor biopsies. These data highlight the discordance between MHC-epitope density and frequencies of associated CTL with implications for cell-based immunotherapies and/or vaccines for EBV-associated disease.


Assuntos
Anticorpos Monoclonais/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Latência Viral/imunologia , Animais , Antígenos Virais/imunologia , Linhagem Celular Tumoral , Antígenos Nucleares do Vírus Epstein-Barr/imunologia , Antígeno HLA-A2/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas da Matriz Viral/imunologia
9.
Oncoimmunology ; 2(11): e26859, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24482752

RESUMO

Dendritic cells (DCs) are highly potent initiators of adaptive immune responses and, as such, represent promising tools for immunotherapeutic applications. Despite their potential, the current efficacy of DC-based immunotherapies is poor. CD137 ligand (CD137L) signaling has been used to derive a novel type of DCs from human peripheral blood monocytes, termed CD137L-DCs. Here, we report that CD137L-DCs induce more potent cytotoxic T-cell responses than classical DCs (cDCs). Furthermore, in exploring several DC maturation factors for their ability to enhance the potency of CD137L-DCs, we found the combination of interferon γ (IFNγ) and the mixed Toll-like receptor (TLR)7/8 agonist R848, to display the highest efficacy in potentiating the T-cell co-stimulatory activity of CD137L-DCs. Of particular importance, CD137L-DCs were found to be more efficient than cDCs in activating autologous T cells targeting the cytomegalovirus (CMV)-derived protein pp65. Specifically, CD137L-DC-stimulated T cells were found to secrete higher levels of IFNγ and killed 2-3 times more HLA-matched, pp65-pulsed target cells than T cells activated by cDCs. Finally, in addition to stimulating CD8+ T cells, CD137L-DCs efficiently activated CD4+ T cells. Taken together, these findings demonstrate the superior potency of CD137L-stimulated DCs in activating CMV-specific, autologous T cells, and encourage the further development of CD137L-DCs for antitumor immunotherapy.

10.
J Cell Sci ; 125(Pt 1): 200-8, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22250196

RESUMO

Mesenchymal stromal cells (MSCs) possess both immuno-privileged and immuno-inhibitory properties that contribute to their therapeutic effects. Ex vivo expansion is required to obtain sufficient cells for therapy, but might also alter their immunological properties. To date there has been no systematic study of MSC immunobiology during extended culture. Here, we demonstrate that both immuno-privilege and immunosuppressive properties of MSCs change with increasing passage. We demonstrate that although MSCs exhibit powerful immunosuppressive effects through secretion of transforming growth factor-ß (TGF-ß) and induction of interleukin-10, these effects are diminished by a concomitant increase in MSC immunogenicity. Interferon-γ treatment for 3 days induced extendedly cultured MSCs to express significantly higher levels of major histocompatibility complex class I. In vivo, this results in cells that induce significant delayed-type hypersensitivity reactions in allogeneic recipients. Importantly, these effects are alleviated by isolation of the transplanted MSCs using a semi-permeable barrier. Under these conditions, even MSCs cultured through as many as 14 passages still exhibit immuno-inhibitory effects in vivo. Furthermore, the levels of anti-inflammatory molecule TGF-ß secreted by MSCs were maintained in the extended culture. These data shed light on the variable results of allogeneic MSCs in transplantation and suggest alternative strategies for prolonging the effect of allogeneic MSCs in cell-based therapy.


Assuntos
Citocinas/imunologia , Citocinas/metabolismo , Fatores Imunológicos/imunologia , Fatores Imunológicos/metabolismo , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Animais , Técnicas de Cultura de Células , Meios de Cultura/química , Meios de Cultura/metabolismo , Citocinas/química , Feminino , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Hipersensibilidade Tardia/imunologia , Fatores Imunológicos/química , Interferon gama/imunologia , Interleucina-10/imunologia , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Solubilidade , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo
11.
J Cell Mol Med ; 13(8B): 2436-2447, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19508389

RESUMO

Current bone disease therapy with bone marrow-derived mesenchymal stromal cells (MSC) is hampered by low efficiency. Advanced allogeneic studies on well-established mouse genetic and disease models are hindered by difficulties in isolating murine MSC (mMSC). And mMSC prepared from different laboratories exhibit significant heterogeneity. Hence, this study aimed to identify and isolate a sub-population of mMSC at an early passage number with high osteogenic potential. Enrichment of mMSC was achieved by 1-hr silica incubation and negative selection. Approximately 96% of these cells synthesized osteocalcin after 28 days of osteogenic induction in vitro, and displayed a complete dynamic alteration of alkaline phosphatase (ALP) activity with increasing osteogenic maturation and strong mineralization. Moreover, the cells displayed uniform and stable surface molecular profile, long-term survival, fast proliferation in vitro with maintenance of normal karyotype and distinct immunological properties. CD73 was found to be expressed exclusively in osteogenesis but not in adipogenesis. These cells also retained high osteogenic potential upon allogeneic transplantation in an ectopic site by the detection of bone-specific ALP, osteopontin, osteocalcin and local mineralization as early as 12 days after implantation. Hence, these cells may provide a useful source for improving current strategies in bone regenerative therapy, and for characterizing markers defining the putative MSC population.


Assuntos
Osso e Ossos/citologia , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Células Estromais/citologia , Animais , Feminino , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...