Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biodes Res ; 2020: 1016207, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-37849905

RESUMO

The long atmospheric residence time of CO2 creates an urgent need to add atmospheric carbon drawdown to CO2 regulatory strategies. Synthetic and systems biology (SSB), which enables manipulation of cellular phenotypes, offers a powerful approach to amplifying and adding new possibilities to current land management practices aimed at reducing atmospheric carbon. The participants (in attendance: Christina Agapakis, George Annas, Adam Arkin, George Church, Robert Cook-Deegan, Charles DeLisi, Dan Drell, Sheldon Glashow, Steve Hamburg, Henry Jacoby, Henry Kelly, Mark Kon, Todd Kuiken, Mary Lidstrom, Mike MacCracken, June Medford, Jerry Melillo, Ron Milo, Pilar Ossorio, Ari Patrinos, Keith Paustian, Kristala Jones Prather, Kent Redford, David Resnik, John Reilly, Richard J. Roberts, Daniel Segre, Susan Solomon, Elizabeth Strychalski, Chris Voigt, Dominic Woolf, Stan Wullschleger, and Xiaohan Yang) identified a range of possibilities by which SSB might help reduce greenhouse gas concentrations and which might also contribute to environmental sustainability and adaptation. These include, among other possibilities, engineering plants to convert CO2 produced by respiration into a stable carbonate, designing plants with an increased root-to-shoot ratio, and creating plants with the ability to self-fertilize. A number of serious ecological and societal challenges must, however, be confronted and resolved before any such application can be fully assessed, realized, and deployed.

2.
J Air Waste Manag Assoc ; 61(8): 810-814, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28880135
4.
J Air Waste Manag Assoc ; 58(6): 735-86, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18581807

RESUMO

Combustion of coal, oil, and natural gas, and to a lesser extent deforestation, land-cover change, and emissions of halocarbons and other greenhouse gases, are rapidly increasing the atmospheric concentrations of climate-warming gases. The warming of approximately 0.1-0.2 degrees C per decade that has resulted is very likely the primary cause of the increasing loss of snow cover and Arctic sea ice, of more frequent occurrence of very heavy precipitation, of rising sea level, and of shifts in the natural ranges of plants and animals. The global average temperature is already approximately 0.8 degrees C above its preindustrial level, and present atmospheric levels of greenhouse gases will contribute to further warming of 0.5-1 degrees C as equilibrium is re-established. Warming has been and will be greater in mid and high latitudes compared with low latitudes, over land compared with oceans, and at night compared with day. As emissions continue to increase, both warming and the commitment to future warming are presently increasing at a rate of approximately 0.2 degrees C per decade, with projections that the rate of warming will further increase if emission controls are not put in place. Such warming and the associated changes are likely to result in severe impacts on key societal and environmental support systems. Present estimates are that limiting the increase in global average surface temperature to no more than 2-2.5 degrees C above its 1750 value of approximately 15 degrees C will be required to avoid the most catastrophic, but certainly not all, consequences of climate change. Accomplishing this will require reducing emissions sharply by 2050 and to near zero by 2100. This can only be achieved if: (1) developed nations move rapidly to demonstrate that a modem society can function without reliance on technologies that release carbon dioxide (CO2) and other non-CO2 greenhouse gases to the atmosphere; and (2) if developing nations act in the near-term to sharply limit their non-CO2 emissions while minimizing growth in CO2 emissions, and then in the long-term join with the developed nations to reduce all emissions as cost-effective technologies are developed.


Assuntos
Efeito Estufa , Atmosfera/análise , Carbono/metabolismo , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Clima , Combustíveis Fósseis , Política Pública , Estados Unidos
5.
Nature ; 441(7092): 406, 2006 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-16724036
6.
Nature ; 434(7032): 435, 2005 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-15791227
7.
Nature ; 429(6993): 699, 2004 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-15201885
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA