Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Surg Res ; 281: 122-129, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36155269

RESUMO

INTRODUCTION: Although the economic burden of cancer care is an emerging concern in the United States, the potential financial toxicity of breast cancer care at the patient level remains poorly understood. This study aims to characterize the scope of the contributors to financial distress on breast cancer patients and the resources utilized to address them. METHODS: Adult female patients diagnosed with invasive breast cancer or ductal carcinoma in situ between 2014 and 2019 at a single institution were retrospectively evaluated. Those who enrolled in copay assistance or indicated financial concerns on an intake distress screen were provided a web-based survey assessing financial changes, resources used, and financial engagement with providers. Semi-structured interviews further explored sources of financial distress and were analyzed by two researchers using grounded theory methodology. RESULTS: Sixty-eight patients completed the online survey, 15 of the 68 also participated in semi-structured phone interviews. On the online survey 74% of participants endorsed a financial distress score ≥5 on a scale of 0-10. Seventy-four percent changed their budget, 72% used their savings, and 60% cut down on spending. However, only 40% used resources such as financial counseling or financial assistance. Interviews revealed three major contributors to financial distress: (1) unexpected medical and nonmedical expenses, (2) lost revenue from missed work, and (3) altered budgeting. CONCLUSIONS: Many breast cancer patients experience significant financial distress without access to the resources they need. This study highlights the need for financial transparency, supportive financial services counseling at the time of diagnosis, throughout treatment and beyond.


Assuntos
Neoplasias da Mama , Neoplasias , Adulto , Humanos , Estados Unidos , Feminino , Estresse Financeiro , Estudos Retrospectivos , Inquéritos e Questionários , Atenção à Saúde
2.
Pharmaceutics ; 14(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36145582

RESUMO

Graphene-based materials have recently gained attention for regenerating various tissue defects including bone, nerve, cartilage, and muscle. Even though the potential of graphene-based biomaterials has been realized in tissue engineering, there are significantly many more studies reporting in vitro and in vivo data in bone tissue engineering. Graphene constructs have mainly been studied as two-dimensional (2D) substrates when biological organs are within a three-dimensional (3D) environment. Therefore, developing 3D graphene scaffolds is the next clinical standard, yet most have been fabricated as foams which limit control of consistent morphology and porosity. To overcome this issue, 3D-printing technology is revolutionizing tissue engineering, due to its speed, accuracy, reproducibility, and overall ability to personalize treatment whereby scaffolds are printed to the exact dimensions of a tissue defect. Even though various 3D-printing techniques are available, practical applications of 3D-printed graphene scaffolds are still limited. This can be attributed to variations associated with fabrication of graphene derivatives, leading to variations in cell response. This review summarizes selected works describing the different fabrication techniques for 3D scaffolds, the novelty of graphene materials, and the use of 3D-printed scaffolds of graphene-based nanoparticles for bone tissue engineering.

3.
Bioengineering (Basel) ; 9(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36004932

RESUMO

Stem cell therapy for the treatment of tendon injury is an emerging clinical practice in the fields of human and veterinary sports medicine; however, the therapeutic benefit of intralesional transplantation of mesenchymal stem cells in tendonitis cases is not well designed. Questions persist regarding the overall tenogenic potential and efficacy of this treatment alone. In this study, we aimed to isolate a rat mesenchymal stem cell lineage for in vitro and in vivo use, to assess the effects of growth factor exposure in vitro on cell morphology, behavior, and tendon-associated glycoprotein production, and to assess the therapeutic potential of intralesional stem cells, as a function of dose, in vivo. First, rat adipose-derived (rAdMSC) and bone marrow-derived (rBMSC) stem cell lineages were isolated, characterized with flow cytometric analysis, and compared in terms of proliferation (MTS assay) and cellular viability (calcein AM staining). Rat AdMSCs displayed superior proliferation and more homogenous CD 73, CD 44H, and CD 90 expression as compared to rBMSC. Next, the tenogenic differentiation potential of the rAdMSC lineage was tested in vitro through isolated and combined stimulation with reported tenogenic growth factors, transforming growth factor (TGF)-ß3 and connective tissue growth factor (CTGF). We found that the most effective tenogenic factor in terms of cellular morphologic change, cell alignment/orientation, sustained cellular viability, and tendon-associated glycoprotein upregulation was TGFß3, and we confirmed that rAdMSC could be induced toward a tenogenic lineage in vitro. Finally, the therapeutic potential of rAdMSCs as a function of dose was assessed using a rat acute Achilles tendon injury model. Amounts of 5 × 105 (low dose) and 4 × 106 (high dose) were used. Subjectively, on the gross morphology, the rAdMSC-treated tendons exhibited fewer adhesions and less scar tissue than the control tendons; however, regardless of the rAdMSC dose, no significant differences in histological grade or tissue collagen I deposition were noted between the rAdMSC-treated and control tendons. Collectively, rAdMSCs exhibited appropriate stem cell markers and tenogenic potential in vitro, but the clinical efficacy of intralesional implantation of undifferentiated cells in acute tendonitis cases could not be proven. Further investigation into complementary therapeutics or specialized culture conditions prior to implantation are warranted.

4.
Tissue Eng Part B Rev ; 28(5): 1022-1034, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34693743

RESUMO

Various abnormalities of the tongue, including cancers, commonly require surgical removal to sequester growth and metastasis. However, even minor resections can affect functional outcomes such as speech and swallowing, thereby reducing quality of life. Surgical resections alone create volumetric muscle loss whereby muscle tissue cannot self-regenerate within the tongue. In these cases, the tongue is reconstructed typically in the form of autologous skin flaps. However, flap reconstruction has many limitations and unfortunately is the primary option for oral and reconstructive surgeons to treat tongue defects. The alternative, but yet undeveloped, strategy for tongue reconstruction is regenerative medicine, which widely focuses on building new organs with stem cells. Regenerative medicine has successfully treated many tissues, but research has inadequately addressed the tongue as a vital organ in need of tissue engineering. In this review, we address the current standard for tongue reconstruction, the cellular mechanisms of muscle cell development, and the stem cell studies that have attempted muscle engineering within the tongue. Until now, no review has focused on engineering the tongue with regenerative medicine, which could guide innovative strategies for tongue reconstruction. Impact statement Unlike other bodily organs, the current literature has inadequately addressed the tongue as a vital organ in need of tissue engineering. Therefore, this review seeks to highlight the clinical challenges of tongue reconstruction, alternative tissue engineering strategies, and to summarize the studies involving muscle regeneration within the tongue. This information will guide maxillofacial surgeons and tissue engineering scientists to pursue innovative strategies that alleviate volumetric muscle loss in the tongue.


Assuntos
Procedimentos de Cirurgia Plástica , Neoplasias da Língua , Humanos , Neoplasias da Língua/cirurgia , Qualidade de Vida , Projetos de Pesquisa , Língua/cirurgia , Músculos/cirurgia , Regeneração
5.
J Nanobiotechnology ; 19(1): 285, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551771

RESUMO

BACKGROUND: In the last decade, graphene surfaces have consistently supported osteoblast development of stem cells, holding promise as a therapeutic implant for degenerative bone diseases. However, until now no study has specifically examined the genetic changes when stem cells undergo osteogenic differentiation on graphene. RESULTS: In this study, we provide a detailed overview of gene expressions when human mesenchymal stem cells (MSCs) derived from either adipose tissue (AD-MSCs) or bone marrow (BM-MSCs), are cultured on graphene. Genetic expressions were measured using osteogenic RT2 profiler PCR arrays and compared either over time (7 or 21 days) or between each cell source at each time point. Genes were categorized as either transcriptional regulation, osteoblast-related, extracellular matrix, cellular adhesion, BMP and SMAD signaling, growth factors, or angiogenic factors. Results showed that both MSC sources cultured on low oxygen graphene surfaces achieved osteogenesis by 21 days and expressed specific osteoblast markers. However, each MSC source cultured on graphene did have genetically different responses. When compared between each other, we found that genes of BM-MSCs were robustly expressed, and more noticeable after 7 days of culturing, suggesting BM-MSCs initiate osteogenesis at an earlier time point than AD-MSCs on graphene. Additionally, we found upregulated angiogenic markers in both MSCs sources, suggesting graphene could simultaneously attract the ingrowth of blood vessels in vivo. Finally, we identified several novel targets, including distal-less homeobox 5 (DLX5) and phosphate-regulating endopeptidase homolog, X-linked (PHEX). CONCLUSIONS: Overall, this study shows that graphene genetically supports differentiation of both AD-MSCs and BM-MSCs but may involve different signaling mechanisms to achieve osteogenesis. Data further demonstrates the lack of aberrant signaling due to cell-graphene interaction, strengthening the application of specific form and concentration of graphene nanoparticles in bone tissue engineering.


Assuntos
Medula Óssea , Diferenciação Celular , Grafite/metabolismo , Células-Tronco Mesenquimais , Osteogênese/fisiologia , Transdução de Sinais , Tecido Adiposo/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Osteoblastos
6.
Pharmaceuticals (Basel) ; 13(11)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114710

RESUMO

The field of regenerative medicine utilizes a wide array of technologies and techniques for repairing and restoring function to damaged tissues. Among these, stem cells offer one of the most potent and promising biological tools to facilitate such goals. Implementation of mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) offer varying advantages based on availability and efficacy in the target tissue. The focus of this review is to discuss characteristics of these three subset stem cell populations and examine their utility in tissue engineering. In particular, the development of therapeutics that utilize cell-based approaches, divided by germinal layer to further assess research targeting specific tissues of the mesoderm, ectoderm, and endoderm. The combinatorial application of MSCs, iPSCs, and ESCs with natural and synthetic scaffold technologies can enhance the reparative capacity and survival of implanted cells. Continued efforts to generate more standardized approaches for these cells may provide improved study-to-study variations on implementation, thereby increasing the clinical translatability of cell-based therapeutics. Coupling clinically translatable research with commercially oriented methods offers the potential to drastically advance medical treatments for multiple diseases and injuries, improving the quality of life for many individuals.

7.
BMC Complement Altern Med ; 18(1): 188, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29914450

RESUMO

BACKGROUND: Zyflamend, a blend of herbal extracts, effectively inhibits tumor growth using preclinical models of castrate-resistant prostate cancer mediated in part by 5'-adenosine monophosphate-activated protein kinase (AMPK), a master energy sensor of the cell. Clinically, treatment with Zyflamend and/or metformin (activators of AMPK) had benefits in castrate-resistant prostate cancer patients who no longer responded to treatment. Two predominant upstream kinases are known to activate AMPK: liver kinase B1 (LKB1), a tumor suppressor, and calcium-calmodulin kinase kinase-2 (CaMKK2), a tumor promotor over-expressed in many cancers. The objective was to interrogate how Zyflamend activates AMPK by determining the roles of LKB1 and CaMKK2. METHODS: AMPK activation was determined in CWR22Rv1 cells treated with a variety of inhibitors of LKB1 and CaMKK2 in the presence and absence of Zyflamend, and in LKB1-null HeLa cells that constitutively express CaMKK2, following transfection with wild type LKB1 or catalytically-dead mutants. Upstream regulation by Zyflamend of LKB1 and CaMKK2 was investigated targeting protein kinase C-zeta (PKCζ) and death-associated protein kinase (DAPK), respectively. RESULTS: Zyflamend's activation of AMPK appears to be LKB1 dependent, while simultaneously inhibiting CaMKK2 activity. Zyflamend failed to rescue the activation of AMPK in the presence of pharmacological and molecular inhibitors of LKB1, an effect not observed in the presence of inhibitors of CaMKK2. Using LKB1-null and catalytically-dead LKB1-transfected HeLa cells that constitutively express CaMKK2, ionomycin (activator of CaMKK2) increased phosphorylation of AMPK, but Zyflamend only had an effect in cells transfected with wild type LKB1. Zyflamend appears to inhibit CaMKK2 by DAPK-mediated phosphorylation of CaMKK2 at Ser511, an effect prevented by a DAPK inhibitor. Alternatively, Zyflamend mediates LKB1 activation via increased phosphorylation of PKCζ, where it induced translocation of PKCζ and LKB1 to their respective active compartments in HeLa cells following treatment. Altering the catalytic activity of LKB1 did not alter this translocation. DISCUSSION: Zyflamend's activation of AMPK is mediated by LKB1, possibly via PKCζ, but independent of CaMKK2 by a mechanism that appears to involve DAPK. CONCLUSIONS: Therefore, this is the first evidence that natural products simultaneously and antithetically regulate upstream kinases, known to be involved in cancer, via the activation of AMPK.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Extratos Vegetais/farmacologia , Neoplasias da Próstata/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Linhagem Celular Tumoral , Células HeLa , Humanos , Masculino , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
8.
J Med Food ; 21(3): 306-316, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29227176

RESUMO

Zyflamend is a highly controlled blend of 10 herbal extracts that synergistically impact multiple cell signaling pathways with anticancer and anti-inflammatory properties. More recently, its effects were shown to also modify cellular energetics, for example, activation of fatty acid oxidation and inhibition of lipogenesis. However, its general metabolic effects in vivo have yet to be explored. The objective of this study was to characterize the tissue specific metabolomes in response to supplementation of Zyflamend in mice, with a comparison of equivalent metabolomics data generated in plasma from humans supplemented with Zyflamend. Because Zyflamend has been shown to activate AMPK, the "energy sensor" of the cell, in vitro, the effects of Zyflamend on adiposity were also tested in the murine model. C57BL/6 mice were fed diets that mimicked the macro- and micronutrient composition of the U.S. diet with and without Zyflamend supplementation at human equivalent doses. Untargeted metabolomics was performed in liver, skeletal muscle, adipose, and plasma from mice consuming Zyflamend and in plasma from humans supplemented with Zyflamend at an equivalent dose. Adiposity in mice was significantly reduced in the Zyflamend-treated animals (compared with controls) without affecting body weight or weight gain. Based on KEGG pathway enrichment, purine and pyrimidine metabolism (potential regulators of AMPK) were particularly responsive to Zyflamend across all tissues, but only in mice. Consistent with the metabolomics data, Zyflamend activated AMPK and inhibited acetyl CoA-carboxylase in adipose tissue, key regulators of lipogenesis. Zyflamend reduces adipose tissue in mice through a mechanism that likely involves the activation of AMPK.


Assuntos
Gordura Abdominal/metabolismo , Anti-Inflamatórios não Esteroides/administração & dosagem , Antineoplásicos Fitogênicos/administração & dosagem , Suplementos Nutricionais , Fígado/metabolismo , Músculo Esquelético/metabolismo , Extratos Vegetais/administração & dosagem , Gordura Abdominal/enzimologia , Adiposidade , Adulto , Idoso , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Antineoplásicos Fitogênicos/efeitos adversos , Biomarcadores/sangue , Biomarcadores/metabolismo , Suplementos Nutricionais/efeitos adversos , Análise Discriminante , Metabolismo Energético , Humanos , Fígado/enzimologia , Masculino , Metabolômica/métodos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Músculo Esquelético/enzimologia , Especificidade de Órgãos , Extratos Vegetais/efeitos adversos , Análise de Componente Principal , Distribuição Aleatória , Especificidade da Espécie
9.
J Cell Physiol ; 231(8): 1804-13, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26661480

RESUMO

Dietary fiber has been suggested to suppress colorectal cancer development, although the mechanisms contributing to this beneficial effect remain elusive. Butyrate, a fermentation product of fiber, has been shown to have anti-proliferative and pro-apoptotic effects on colorectal cancer cells. The metabolic fate of butyrate in the cell is important in determining whether, it acts as an HDAC inhibitor or is consumed as a short-chain fatty acid. Non-cancerous colonocytes utilize butyrate as the primary energy source whereas cancerous colonocytes increase glucose utilization through the Warburg effect. In this study, we show that butyrate oxidation is decreased in cancerous colonocytes compared to non-cancerous colonocytes. We demonstrate that colorectal cancer cells utilize both a carnitine-dependent and carnitine-independent mechanism that contributes to butyrate oxidation. The carnitine-dependent mechanism is contingent on butyrate concentration. Knockdown of CPT1A in colorectal cancer cells abolishes butyrate oxidation. In terms of selectivity, the carnitine-dependent mechanism only regulated butyrate oxidation, as acetate and propionate oxidation were carnitine-independent. Carnitine decreased the action of butyrate as an HDAC inhibitor and suppressed induction of H3 acetylation by butyrate in colorectal cancer cells. Thus, diminished oxidation of butyrate is associated with decreased HDAC inhibition and histone acetylation. In relation to the mechanism, we find that dichloroacetate, which decreases phosphorylation of pyruvate dehydrogenase, increased butyrate oxidation and that this effect was carnitine-dependent. In conclusion, these data suggest that colorectal cancer cells decrease butyrate oxidation through inhibition of pyruvate dehydrogenase, which is carnitine-dependent, and provide insight into why butyrate shows selective effects toward colorectal cancer cells. J. Cell. Physiol. 231: 1804-1813, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Antineoplásicos/farmacologia , Ácido Butírico/farmacologia , Carnitina/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Metabolismo Energético/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Acetilação , Antineoplásicos/metabolismo , Ácido Butírico/metabolismo , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ácido Dicloroacético/farmacologia , Relação Dose-Resposta a Droga , Células HCT116 , Inibidores de Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Oxirredução , Fosforilação , Complexo Piruvato Desidrogenase/antagonistas & inibidores , Complexo Piruvato Desidrogenase/metabolismo , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Membro 5 da Família 22 de Carreadores de Soluto , Fatores de Tempo , Transfecção
10.
PLoS One ; 10(10): e0139999, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26465748

RESUMO

The generalist parasite Trypanosoma cruzi has two phylogenetic lineages associated almost exclusively with bats-Trypanosoma cruzi Tcbat and the subspecies T. c. marinkellei. We present new information on the genetic variation, geographic distribution, host associations, and potential vectors of these lineages. We conducted field surveys of bats and triatomines in southern Ecuador, a country endemic for Chagas disease, and screened for trypanosomes by microscopy and PCR. We identified parasites at species and genotype levels through phylogenetic approaches based on 18S ribosomal RNA (18S rRNA) and cytochrome b (cytb) genes and conducted a comparison of nucleotide diversity of the cytb gene. We document for the first time T. cruzi Tcbat and T. c. marinkellei in Ecuador, expanding their distribution in South America to the western side of the Andes. In addition, we found the triatomines Cavernicola pilosa and Triatoma dispar sharing shelters with bats. The comparisons of nucleotide diversity revealed a higher diversity for T. c. marinkellei than any of the T. c. cruzi genotypes associated with Chagas disease. Findings from this study increased both the number of host species and known geographical ranges of both parasites and suggest potential vectors for these two trypanosomes associated with bats in rural areas of southern Ecuador. The higher nucleotide diversity of T. c. marinkellei supports a long evolutionary relationship between T. cruzi and bats, implying that bats are the original hosts of this important parasite.


Assuntos
Doença de Chagas/genética , Quirópteros/genética , Filogeografia , Trypanosoma cruzi/genética , Animais , Doença de Chagas/parasitologia , Doença de Chagas/transmissão , Quirópteros/parasitologia , Equador , Genótipo , Humanos , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Trypanosoma cruzi/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...