Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431691

RESUMO

There is considerable evidence for hippocampal time cells that briefly activate in succession to represent the temporal structure of memories. Previous studies have shown that time cells can be disrupted while leaving place cells intact, indicating that spatial and temporal information can be coded in parallel. However, the circuits in which spatial and temporal information are coded have not been clearly identified. Here we investigated temporal and spatial coding by dorsal hippocampal CA1 (dCA1) neurons in mice trained on a classic spatial working-memory task. On each trial, the mice approached the same choice point on a maze but were trained to alternate between traversing one of two distinct spatial routes (spatial coding phase). In between trials, there was a 10-s mnemonic delay during which the mouse continuously ran in a fixed location (temporal coding phase). Using cell-type-specific optogenetic methods, we found that inhibiting dorsal CA2 (dCA2) inputs into dCA1 degraded time cell coding during the mnemonic delay and impaired the mouse's subsequent memory-guided choice. Conversely, inhibiting dCA2 inputs during the spatial coding phase had a negligible effect on place cell activity in dCA1 and no effect on behavior. Collectively, our work demonstrates that spatial and temporal coding in dCA1 is largely segregated with respect to the dCA2-dCA1 circuit and suggests that CA2 plays a critical role in representing the flow of time in memory within the hippocampal network.


Assuntos
Região CA1 Hipocampal/fisiologia , Região CA2 Hipocampal/fisiologia , Memória de Curto Prazo/fisiologia , Memória Espacial/fisiologia , Animais , Hipocampo/fisiologia , Humanos , Camundongos , Neurônios/fisiologia
3.
Sports (Basel) ; 5(4)2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29910439

RESUMO

The purpose of this monitoring study was to investigate how alterations in training affect changes in force-related characteristics and weightlifting performance. SUBJECTS: Seven competitive weightlifters participated in the study. METHODS: The weightlifters performed a block style periodized plan across 20 weeks. Force plate data from the isometric mid-thigh pull and static jumps with 0 kg, 11 kg, and 20 kg were collected near the end of each training block (weeks 1, 6, 10, 13, 17, and 20). Weightlifting performance was measured at weeks 0, 7, 11, and 20. RESULTS: Very strong correlations were noted between weightlifting performances and isometric rate of force development (RFD), isometric peak force (PF), peak power (PP), and jump height (JH). Men responded in a more predictable manner than the women. During periods of higher training volume, RFD was depressed to a greater extent than PF. JH at 20 kg responded in a manner reflecting the expected fatigue response more so than JH at 0 kg and 11 kg. CONCLUSIONS: PF appears to have been more resistant to volume alterations than RFD and JH at 20 kg. RFD and JH at 20 kg appear to be superior monitoring metrics due to their "sensitivity."

4.
Learn Mem ; 22(9): 438-43, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26286654

RESUMO

The entorhinal cortex (EC)-hippocampal (HPC) network plays an essential role for episodic memory, which preserves spatial and temporal information about the occurrence of past events. Although there has been significant progress toward understanding the neural circuits underlying the spatial dimension of episodic memory, the relevant circuits subserving the temporal dimension are just beginning to be understood. In this review, we examine the evidence concerning the role of the EC in associating events separated by time--or temporal associative learning--with emphasis on the function of persistent activity in the medial entorhinal cortex layer III (MECIII) and their direct inputs into the CA1 region of HPC. We also discuss the unique role of Island cells in the medial entorhinal cortex layer II (MECII), which is a newly discovered direct feedforward inhibitory circuit to CA1. Finally, we relate the function of these entorhinal cortical circuits to recent findings concerning hippocampal time cells, which may collectively activate in sequence to bridge temporal gaps between discontiguous events in an episode.


Assuntos
Aprendizagem por Associação/fisiologia , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Percepção do Tempo/fisiologia , Animais , Humanos , Vias Neurais/fisiologia
5.
Nature ; 522(7556): 335-9, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26085274

RESUMO

Stress is considered a potent environmental risk factor for many behavioural abnormalities, including anxiety and mood disorders. Animal models can exhibit limited but quantifiable behavioural impairments resulting from chronic stress, including deficits in motivation, abnormal responses to behavioural challenges, and anhedonia. The hippocampus is thought to negatively regulate the stress response and to mediate various cognitive and mnemonic aspects of stress-induced impairments, although the neuronal underpinnings sufficient to support behavioural improvements are largely unknown. Here we acutely rescue stress-induced depression-related behaviours in mice by optogenetically reactivating dentate gyrus cells that were previously active during a positive experience. A brain-wide histological investigation, coupled with pharmacological and projection-specific optogenetic blockade experiments, identified glutamatergic activity in the hippocampus-amygdala-nucleus-accumbens pathway as a candidate circuit supporting the acute rescue. Finally, chronically reactivating hippocampal cells associated with a positive memory resulted in the rescue of stress-induced behavioural impairments and neurogenesis at time points beyond the light stimulation. Together, our data suggest that activating positive memories artificially is sufficient to suppress depression-like behaviours and point to dentate gyrus engram cells as potential therapeutic nodes for intervening with maladaptive behavioural states.


Assuntos
Depressão/psicologia , Depressão/terapia , Memória/fisiologia , Prazer/fisiologia , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Animais , Comportamento Animal , Feminino , Hipocampo/citologia , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais , Núcleo Accumbens/citologia , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiologia , Optogenética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estresse Psicológico/psicologia , Fatores de Tempo
6.
J Comput Neurosci ; 38(3): 499-519, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25788412

RESUMO

A recent report estimates that the number of simultaneously recorded neurons is growing exponentially. A commonly employed statistical paradigm using discrete-time point process models of neural activity involves the computation of a maximum-likelihood estimate. The time to computate this estimate, per neuron, is proportional to the number of bins in a finely spaced discretization of time. By using continuous-time models of neural activity and the optimally efficient Gaussian quadrature, memory requirements and computation times are dramatically decreased in the commonly encountered situation where the number of parameters p is much less than the number of time-bins n. In this regime, with q equal to the quadrature order, memory requirements are decreased from O(np) to O(qp), and the number of floating-point operations are decreased from O(np(2)) to O(qp(2)). Accuracy of the proposed estimates is assessed based upon physiological consideration, error bounds, and mathematical results describing the relation between numerical integration error and numerical error affecting both parameter estimates and the observed Fisher information. A check is provided which is used to adapt the order of numerical integration. The procedure is verified in simulation and for hippocampal recordings. It is found that in 95 % of hippocampal recordings a q of 60 yields numerical error negligible with respect to parameter estimate standard error. Statistical inference using the proposed methodology is a fast and convenient alternative to statistical inference performed using a discrete-time point process model of neural activity. It enables the employment of the statistical methodology available with discrete-time inference, but is faster, uses less memory, and avoids any error due to discretization.


Assuntos
Funções Verossimilhança , Modelos Neurológicos , Potenciais de Ação/fisiologia , Algoritmos , Animais , Simulação por Computador , Estimulação Elétrica , Hipocampo/citologia , Hipocampo/fisiologia , Modelos Estatísticos , Neurônios/fisiologia , Distribuição Normal , Distribuição de Poisson , Ratos , Reprodutibilidade dos Testes
7.
J Neurosci ; 34(13): 4692-707, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24672015

RESUMO

The medial temporal lobe (MTL) is believed to support episodic memory, vivid recollection of a specific event situated in a particular place at a particular time. There is ample neurophysiological evidence that the MTL computes location in allocentric space and more recent evidence that the MTL also codes for time. Space and time represent a similar computational challenge; both are variables that cannot be simply calculated from the immediately available sensory information. We introduce a simple mathematical framework that computes functions of both spatial location and time as special cases of a more general computation. In this framework, experience unfolding in time is encoded via a set of leaky integrators. These leaky integrators encode the Laplace transform of their input. The information contained in the transform can be recovered using an approximation to the inverse Laplace transform. In the temporal domain, the resulting representation reconstructs the temporal history. By integrating movements, the equations give rise to a representation of the path taken to arrive at the present location. By modulating the transform with information about allocentric velocity, the equations code for position of a landmark. Simulated cells show a close correspondence to neurons observed in various regions for all three cases. In the temporal domain, novel secondary analyses of hippocampal time cells verified several qualitative predictions of the model. An integrated representation of spatiotemporal context can be computed by taking conjunctions of these elemental inputs, leading to a correspondence with conjunctive neural representations observed in dorsal CA1.


Assuntos
Simulação por Computador , Hipocampo/citologia , Matemática , Modelos Neurológicos , Neurônios/fisiologia , Percepção Espacial/fisiologia , Potenciais de Ação , Animais , Hipocampo/fisiologia , Ratos , Fatores de Tempo
8.
Philos Trans R Soc Lond B Biol Sci ; 369(1637): 20120463, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24446497

RESUMO

Psychologists have long distinguished between prospective and retrospective timing to highlight the difference between our sense of duration during an experience in passing and our sense of duration in hindsight. Humans and other animals use prospective timing in the seconds-to-minutes range in order to learn durations, and can organize their behaviour based upon this knowledge when they know that duration information will be important ahead of time. By contrast, when durations are estimated after the fact, thus precluding the subject from consciously attending to temporal information, duration information must be extracted from other memory representations. The accumulated evidence from prospective timing research has generally led to the hippocampus (HPC) being casted in a supporting role with prefrontal-striatal, cortical or cerebellar circuits playing the lead. Here, I review findings from the animal and human literature that have led to this conclusion and consider that the contribution of the HPC to duration memory is understated because we have little understanding about how we remember duration.


Assuntos
Cognição/fisiologia , Hipocampo/fisiologia , Memória Episódica , Modelos Neurológicos , Percepção do Tempo/fisiologia , Animais , Humanos
9.
J Neurosci ; 33(36): 14607-16, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-24005311

RESUMO

Previous studies have revealed the existence of hippocampal "time cells," principal neurons in CA1 that fire at specific moments in temporally organized experiences. However, in all these studies, animals were in motion; and so, temporal modulation might be due, at least in part, to concurrent or planned movement through space or self-generated movement (path integration). Here the activity of hippocampal CA1 neurons was recorded in head-fixed and immobile rats while they remembered odor stimuli across a delay period. Many neurons selectively and reliably activated at brief moments during the delay, as confirmed by several analyses of temporal modulation, during a strong ongoing θ rhythm. Furthermore, each odor memory was represented by a temporally organized ensemble of time cells composed mostly of neurons that were unique to each memory and some that fired at the same or different moments among multiple memories. These results indicate that ongoing or intended movement through space is not necessary for temporal representations in the hippocampus, and highlight the potential role of time cells as a mechanism for representing the flow of time in distinct memories.


Assuntos
Região CA1 Hipocampal/fisiologia , Memória , Neurônios/fisiologia , Odorantes , Restrição Física , Animais , Região CA1 Hipocampal/citologia , Cabeça , Movimentos da Cabeça , Masculino , Ratos , Ratos Long-Evans , Olfato , Fatores de Tempo
10.
Clin Ophthalmol ; 6: 1211-23, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22927730

RESUMO

Optic neuritis can be defined as typical (associated with multiple sclerosis, improving independent of steroid treatment), or atypical (not associated with multiple sclerosis, steroid-dependent improvement). Causes of atypical optic neuritis include connective tissue diseases (eg, lupus), vasculitis, sarcoidosis, or neuromyelitis optica. In this manuscript, updated treatment options for both typical and atypical optic neuritis are reviewed. Conventional treatments, such as corticosteroids, therapeutic plasma exchange, and intravenous immunoglobulin therapy are all discussed with commentary regarding evidence-based outcomes. Less commonly used treatments and novel purported therapies for optic neuritis are also reviewed. Special scenarios in the treatment of optic neuritis - pediatric optic neuritis, acute demyelinating encephalomyelitis, and optic neuritis occurring during pregnancy - are specifically examined.

11.
J Physiol ; 590(13): 3169-84, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22570382

RESUMO

The gustatory cortex (GC) is important for perceiving the intensity of tastants but it remains unclear as to how single neurons in the region carry out this function. Previous studies have shown that taste-evoked activity from single neurons in GC can be correlated or anticorrelated with tastant concentration, yet whether one or both neural responses signal intensity is poorly characterized because animals from these studies were not trained to report the intensity of the concentration that they tasted. To address this issue, we designed a two-alternative forced choice (2-AFC) task in which freely licking rats distinguished among concentrations of NaCl and recorded from ensembles of neurons in the GC. We identified three neural ensembles that rapidly (<300 ms or ∼2 licks) processed NaCl concentration. For two ensembles, their NaCl evoked activity was anticorrelated with NaCl concentration but could be further distinguished by their response to water; in one ensemble, water evoked the greatest response while in the other ensemble the lowest tested NaCl concentration evoked the greatest response. However, the concentration sensitive activity from each of these ensembles did not show a strong association with the behaviour of the rat in the 2-AFC task, suggesting a lesser role for signalling tastant intensity. Conversely, for a third neural ensemble, its neural activity was well correlated with increases in NaCl concentration, and this relationship best matched the intensity perceived by the rat. These results suggest that this neuronal ensemble in GC whose activity monotonically increases with concentration plays an important role in signalling the intensity of the taste of NaCl.


Assuntos
Córtex Cerebral/fisiologia , Neurônios/fisiologia , Paladar/fisiologia , Animais , Comportamento Animal , Sinais (Psicologia) , Masculino , Ratos , Ratos Long-Evans , Recompensa , Cloreto de Sódio na Dieta , Água
12.
Artigo em Inglês | MEDLINE | ID: mdl-22435054

RESUMO

Time-based decision-making in peak-interval timing procedures involves the setting of response thresholds for the initiation ("Start") and termination ("Stop") of a response sequence that is centered on a target duration. Using intracerebral infusions of the protein synthesis inhibitor anisomycin, we report that the acquisition of the "Start" response depends on normal functioning (including protein synthesis) in the dorsal striatum (DS), but not the ventral striatum (VS). Conversely, disruption of the VS, but not the DS, impairs the acquisition of the "Stop" response. We hypothesize that the dorsal and ventral regions of the striatum function as a competitive neural network that encodes the temporal boundaries marking the beginning and end of a timed response sequence.

13.
J Neurosci Methods ; 205(2): 295-304, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22281297

RESUMO

A method is presented capable of disambiguating the relative influence of statistical covariates upon neural spiking activity. The method, an extension of the generalized linear model (GLM) methodology introduced in Truccolo et al. (2005) to analyze neural spiking data, exploits projection operations motivated by a geometry present in the Fisher information of the GLM maximum likelihood parameter estimator. By exploiting these projections, neural activity can be divided into three categories. These three categories, neural activity due solely to a set of covariates of interest, neural activity due solely to a set of uninteresting, or nuisance, covariates, and neural activity that cannot be unequivocally assigned to either set of covariates, can be associated with physical variables such as time, position, head-direction and velocity. This association allows the analysis of neural activity that can, for example, be due solely to temporal influence, irrespective of other, identified, influences. The method is applied in simulation to a rat exploring a temporally modulated place field. A portion of the analysis reported in MacDonald et al. (2011), using the methodology described herein, is reproduced. This analysis demonstrates the temporal bridging of a delay period in a sequential memory task by firing activity of cells present in the rodent hippocampus that cannot be explained by rodent position, head direction or velocity.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Modelos Teóricos , Neurônios/fisiologia , Animais , Interpretação Estatística de Dados , Ratos
14.
J Strength Cond Res ; 26(2): 422-31, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22240547

RESUMO

Complex training (CT; alternating between heavy and lighter load resistance exercises with similar movement patterns within an exercise session) is a form of training that may potentially bring about a state of postactivation potentiation, resulting in increased dynamic power (Pmax) and rate of force development during the lighter load exercise. Such a method may be more effective than either modality, independently for developing strength. The purpose of this research was to compare the effects of resistance training (RT), plyometric training (PT), and CT on lower body strength and anthropometrics. Thirty recreationally trained college-aged men were trained using 1 of 3 methods: resistance, plyometric, or complex twice weekly for 6 weeks. The participants were tested pre, mid, and post to assess back squat strength, Romanian dead lift (RDL) strength, standing calf raise (SCR) strength, quadriceps girth, triceps surae girth, body mass, and body fat percentage. Diet was not controlled during this study. Statistical measures revealed a significant increase for squat strength (p = 0.000), RDL strength (p = 0.000), and SCR strength (p = 0.000) for all groups pre to post, with no differences between groups. There was also a main effect for time for girth measures of the quadriceps muscle group (p = 0.001), the triceps surae muscle group (p = 0.001), and body mass (p = 0.001; post hoc revealed no significant difference). There were main effects for time and group × time interactions for fat-free mass % (RT: p = 0.031; PT: p = 0.000). The results suggest that CT mirrors benefits seen with traditional RT or PT. Moreover, CT revealed no decrement in strength and anthropometric values and appears to be a viable training modality.


Assuntos
Força Muscular , Músculo Esquelético/fisiologia , Educação Física e Treinamento/métodos , Exercício Pliométrico , Treinamento Resistido/métodos , Adiposidade , Adolescente , Adulto , Análise de Variância , Peso Corporal , Humanos , Extremidade Inferior/fisiologia , Masculino , Músculo Quadríceps/anatomia & histologia , Extremidade Superior/fisiologia , Adulto Jovem
15.
Neuropharmacology ; 62(3): 1221-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21296093

RESUMO

The dopamine transporter (DAT) is the major regulator of the spatial and temporal resolution of dopaminergic neurotransmission in the brain. Hyperdopaminergic mice with DAT gene deletions were evaluated for their ability to perform duration discriminations in the seconds-to-minutes range. DAT -/- mice were unable to demonstrate temporal control of behavior in either fixed-interval or peak-interval timing procedures, whereas DAT +/- mice were similar to DAT +/+ mice under normal conditions. Low to moderate-dose methamphetamine (MAP) challenges indicated that DAT +/- mice were less sensitive to the clock-speed enhancing effects of MAP compared with DAT +/+ mice. In contrast, DAT +/- mice were more vulnerable than DAT +/+ mice to the disruptive effects of MAP at high doses as revealed by the elevation of response rate in the right hand tail of the Gaussian-shaped timing functions. Moreover, this treatment made DAT +/- mice functionally equivalent to DAT -/- mice in terms of the loss of temporal control. Taken together, these results demonstrate the importance of dopaminergic control of interval timing in cortico-striatal circuits and the potential link of timing dysfunctions to schizophrenia and drug abuse.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/deficiência , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Deleção de Genes , Metanfetamina/farmacologia , Esquema de Reforço , Percepção do Tempo/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória , Fatores de Tempo
16.
Neuron ; 71(4): 737-49, 2011 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-21867888

RESUMO

The hippocampus is critical to remembering the flow of events in distinct experiences and, in doing so, bridges temporal gaps between discontiguous events. Here, we report a robust hippocampal representation of sequence memories, highlighted by "time cells" that encode successive moments during an empty temporal gap between the key events, while also encoding location and ongoing behavior. Furthermore, just as most place cells "remap" when a salient spatial cue is altered, most time cells form qualitatively different representations ("retime") when the main temporal parameter is altered. Hippocampal neurons also differentially encode the key events and disambiguate different event sequences to compose unique, temporally organized representations of specific experiences. These findings suggest that hippocampal neural ensembles segment temporally organized memories much the same as they represent locations of important events in spatially defined environments.


Assuntos
Hipocampo/citologia , Hipocampo/fisiologia , Memória/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Animais , Comportamento Animal/fisiologia , Humanos , Masculino , Odorantes , Ratos , Ratos Long-Evans , Fatores de Tempo
17.
J Neurosci ; 29(36): 11271-82, 2009 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-19741134

RESUMO

Much remains to be understood about the differential contributions from primary and secondary sensory cortices to sensory-guided decision making. To address this issue we simultaneously recorded activity from neuronal ensembles in primary [gustatory cortex GC)] and secondary gustatory [orbitofrontal cortex (OFC)] cortices while rats made a taste-guided decision between two response alternatives. We found that before animals commenced a response guided by a tastant cue, GC ensembles contained more information than OFC about the response alternative about to be selected. Thereafter, while the animal's response was underway, the response-selective information in ensembles from both regions increased, albeit to a greater degree in OFC. In GC, this increase depends on a representation of the taste cue guiding the animal's response. The increase in the OFC also depends on the taste cue guiding and other features of the response such as its spatiomotor properties and the behavioral context under which it is executed. Each of these latter features is encoded by different ensembles of OFC neurons that are recruited at specific times throughout the response selection process. These results indicate that during a taste-guided decision task both primary and secondary gustatory cortices dynamically encode different types of information.


Assuntos
Córtex Cerebral/fisiologia , Comportamento de Escolha/fisiologia , Neurônios/fisiologia , Paladar/fisiologia , Potenciais de Ação/fisiologia , Animais , Masculino , Desempenho Psicomotor/fisiologia , Ratos , Ratos Long-Evans
18.
J Biol Chem ; 284(33): 22099-22107, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19542225

RESUMO

Nitric oxide (NO)-donating non-steroidal anti-inflammatory drugs (NSAIDs) represent a promising new class of drugs developed to provide a safer alternative than their conventional NSAID counterparts in chemoprevention. We tested the effects of NO-aspirin 2 on Phase I and Phase II carcinogen-metabolizing enzymes. In HepG2 human hepatoma cells and in LS180 colonic adenocarcinoma cells, NO-aspirin 2 inhibited 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD)-induced cytochrome P450 (CYP) enzyme activity and CYP1A1 and CYP1A2 mRNA expression. These effects were further characterized as being mediated through transcriptional regulation: NO-aspirin 2 inhibited binding of ligand (TCDD)-activated aryl hydrocarbon receptor to the CYP1A1 enhancer sequence; additionally, NO-aspirin 2 suppressed carcinogen-induced expression of CYP1A heterogeneous nuclear RNA. The fate of carcinogen metabolites depends not only on activation by CYP enzymes but also detoxification by Phase II enzymes. Both HepG2 and LS180 cells treated with NO-aspirin 2 showed an increase in glutathione S-transferase-P1 (GST-P1), glutamate-cysteine ligase (GCL), and NAD(P)H:quinone oxidoreductase-1 (NQO1) expression. Compared with two other NO-releasing compounds, diethylenetriamine-NO and the organic nitrate, isosorbide dinitrate, the inhibitory effects of NO-aspirin 2 on TCDD-induced CYP activity and mRNA expression were considerably more potent. Furthermore, aspirin alone had no inhibitory effect on TCDD-induced CYP activity, nor did aspirin up-regulate GCL, GST-P1, or NQO1 expression. Consequent to the effects on carcinogen-metabolizing enzymes, NO-aspirin 2 inhibited [3H]benzo[a]pyrene-DNA adduct formation and DNA damage elicited by TCDD or benzo[a]pyrene. Our results demonstrate that NO-aspirin 2 may be an effective chemopreventive agent by favorably affecting the inhibitory and enhancing effects of Phase I and Phase II carcinogen metabolism, thereby protecting DNA from carcinogenic insult.


Assuntos
Aspirina/química , Carcinógenos/química , Adutos de DNA , Dano ao DNA , Óxido Nítrico/química , Hidrocarboneto de Aril Hidroxilases/metabolismo , Linhagem Celular Tumoral , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1 , Relação Dose-Resposta a Droga , Humanos , Modelos Biológicos , Oxigênio/química , Dibenzodioxinas Policloradas/química , Receptores de Hidrocarboneto Arílico/química , Proteínas Recombinantes/química
19.
Clin Cancer Res ; 15(6): 1964-72, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19276279

RESUMO

PURPOSE: Nonsteroidal anti-inflammatory drugs (NSAID) are promising chemopreventive agents against colon and other cancers. However, the molecular basis mediated by NSAIDs for chemoprevention has not been fully elucidated. Environmental carcinogens induce DNA mutation and cellular transformation; therefore, we examined the effect of NSAIDs on carcinogenesis mediated by the aryl hydrocarbon receptor signaling pathway. In this study, we investigated the activities of a new class of NSAIDs containing dithiolethione moieties (S-NSAID) on both arms of carcinogenesis. EXPERIMENTAL DESIGN: We investigated the effects of the S-NSAIDs, S-diclofenac and S-sulindac, on carcinogen activation and detoxification mechanisms in human hepatoma HepG2 and human colonic adenocarcinoma LS180 cells. RESULTS: We found that S-diclofenac and S-sulindac inhibited the activity and expression of the carcinogen activating enzymes, cytochromes P-450 (CYP) CYP1A1, CYP1B1, and CYP1A2. Inhibition was mediated by transcriptional regulation of the aryl hydrocarbon receptor (AhR) pathway. The S-NSAIDs down-regulated carcinogen-induced expression of CYP1A1 heterogeneous nuclear RNA, a measure of transcription rate. Both compounds blocked carcinogen-activated AhR from binding to the xenobiotic responsive element as shown by chromatin immunoprecipitation. S-diclofenac and S-sulindac inhibited carcinogen-induced CYP enzyme activity through direct inhibition as well as through decreased transcriptional activation of the AhR. S-sulindac induced expression of several carcinogen detoxification enzymes of the glutathione cycle including glutathione S-transferase A2, glutamate cysteine ligase catalytic subunit, glutamate cysteine ligase modifier subunit, and glutathione reductase. CONCLUSIONS: These results indicate that S-diclofenac and S-sulindac may serve as effective chemoprevention agents by favorably balancing the equation of carcinogen activation and detoxification mechanisms.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Anticarcinógenos/farmacologia , Diclofenaco/análogos & derivados , Sulindaco/análogos & derivados , Sulindaco/farmacologia , Tionas/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Citocromo P-450 CYP1A1/antagonistas & inibidores , Citocromo P-450 CYP1A1/genética , Diclofenaco/farmacologia , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Dibenzodioxinas Policloradas/farmacologia , RNA Mensageiro/análise , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores
20.
Learn Mem ; 15(3): 153-62, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18323570

RESUMO

Choline availability in the maternal diet has a lasting effect on brain and behavior of the offspring. To further delineate the impact of early nutritional status, we examined effects of prenatal-choline supplementation on timing, emotion, and memory performance of adult male and female rats. Rats that were given sufficient choline (CON: 1.1 g/kg) or supplemental choline (SUP: 5.0 g/kg) during embryonic days (ED) 12-17 were trained with a differential reinforcement of low-rate (DRL) schedule that was gradually transitioned through 5-, 10-, 18-, 36-, and 72-sec criterion times. We observed that SUP-females emitted more reinforced responses than CON-females, which were more efficient than both groups of males. In addition, SUP-males and SUP-females exhibited a reduction in burst responding (response latencies <2 sec) compared with both groups of CON rats. Furthermore, despite a reduced level of burst responding, the SUP-males made more nonreinforced responses prior to the DRL criterion as a result of maintaining the previous DRL criterion following transition to a new criterion. In summary, long-lasting effects of prenatal-choline supplementation were exhibited by reduced frustrative DRL responding in conjunction with the persistence of temporal memory in SUP-males and enhanced temporal exploration and response efficiency in SUP-females.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Colina/farmacologia , Nootrópicos/farmacologia , Efeitos Tardios da Exposição Pré-Natal , Fatores Etários , Animais , Comportamento Animal/fisiologia , Condicionamento Psicológico/fisiologia , Suplementos Nutricionais , Emoções/fisiologia , Feminino , Masculino , Memória/fisiologia , Gravidez , Ratos , Ratos Sprague-Dawley , Tempo de Reação/fisiologia , Esquema de Reforço , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA