Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pract Radiat Oncol ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37939844

RESUMO

PURPOSE: The goal of this study was to evaluate the image quality provided by a novel cone beam computed tomography (CBCT) platform (HyperSight, Varian Medical Systems), a platform with enhanced reconstruction algorithms as well as rapid acquisition times. Image quality was compared with both status quo CBCT for image guidance, and to fan beam CT (FBCT) acquired on a CT simulator (CTsim). METHODS AND MATERIALS: In a clinical study, 30 individuals were recruited for whom either deep inspiration (DIBH) or deep exhalation breath hold (DEBH) was used during imaging and radiation treatment of tumors involving liver, lung, breast, abdomen, chest wall, and pancreatic sites. All subjects were imaged during breath hold with CBCT on a standard image guidance platform (TrueBeam 2.7, Varian Medical Systems) and FBCT CT (CTsim, GE Optima). HyperSight imaging with both breath hold (HSBH) and free breathing (HSFB) was performed in a single session. The 4 image sets thus acquired were registered and compared using metrics quantifying artifact index, image nonuniformity, contrast, contrast-to-noise ratio, and difference of Hounsfield unit (HU) from CTsim. RESULTS: HSBH provided less severe artifacts compared with both HSFB and TrueBeam. The severity of artifacts in HSBH images was similar to that in CTsim images, with statistically similar artifact index values. CTsim provided the best image uniformity; however, HSBH provided improved uniformity compared with both HSFB and TrueBeam. CTsim demonstrated elevated contrast compared with HyperSight imaging, but both HSBH and HSFB imaging showed superior contrast-to-noise ratio characteristics compared with TrueBeam. The median HU difference of HSBH from CTsim was within 1 HU for muscle/fat tissue, 12 HU for bone, and 14 HU for lung. CONCLUSIONS: The HyperSight system provides 6-second CBCT acquisition with image artifacts that are significantly reduced compared with TrueBeam and comparable to those in CTsim FBCT imaging. HyperSight breath hold imaging was of higher quality compared with free breathing imaging on the same system. The median HU value in HyperSight breath hold imaging is within 15 HU of that in CTsim imaging for muscle, fat, bone, and lung tissue types, indicating the utility of image data for direct dose calculation in adaptive workflows.

2.
J Appl Clin Med Phys ; 23(11): e13765, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36052983

RESUMO

Class solution template trajectories are used clinically for efficiency, safety, and reproducibility. The aim was to develop class solutions for single cranial metastases radiotherapy/radiosurgery based on intracranial target positioning and compare to patient-specific trajectories in the context of 4π optimization. Template trajectories were constructed based on the open-source Montreal Neurological Institute (MNI) average brain. The MNI brain was populated with evenly spaced spherical target volumes (2 cm diameter, N = 243) and organs-at-risk (OARs) were identified. Template trajectories were generated for six anatomical regions (frontal, medial, and posterior, each with laterality dependence) based on previously published 4π optimization methods. Volumetric modulated arc therapy (VMAT) treatment plans generated using anatomically informed template 4π trajectories and patientspecific 4π trajectories were compared against VMAT plans from a standard four-arc template. Four-arc optimization techniques were compared to the standard VMAT template by placing three spherical targets in each of six anatomical regions of a test patient. This yielded 54 plans to compare various plan quality metrics. Increasing plan technique complexity, the total number of OAR maximum dose reductions compared to the standard arc template for the 6 anatomical classes was 4+/-2 (OFIXEDc) and 7+/-2 (OFIXEDi). In 65.6% of all cases, optimized fixed-couch positions outperformed the standard-arc template. Of the three comparisons, the most complex (OFIXEDi) showed the greatest statistical significance compared to the least complex (VMATi) across 12 plan quality metrics of maximum dose to each OAR, V12Gy, total plan Monitor Units, conformity index, and gradient index (p < 0.00417). In approximately 70% of all cases, 4π optimization methods outperformed the standard-arc template in terms of maximum dose reduction to OAR, by exclusively changing the arc geometry. We conclude that a tradeoff exists between complexity of a class solution methodology compared to patient-specific methods for arc selection, in the context of plan quality improvement.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Reprodutibilidade dos Testes , Radioterapia de Intensidade Modulada/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA