Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 122(23): 235001, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31298873

RESUMO

The first systematic study of opacity dependence on atomic number at stellar interior temperatures is used to evaluate discrepancies between measured and modeled iron opacity [J. E. Bailey et al., Nature (London) 517, 56 (2015)NATUAS0028-083610.1038/nature14048]. High-temperature (>180 eV) chromium and nickel opacities are measured with ±6%-10% uncertainty, using the same methods employed in the previous iron experiments. The 10%-20% experiment reproducibility demonstrates experiment reliability. The overall model-data disagreements are smaller than for iron. However, the systematic study reveals shortcomings in models for density effects, excited states, and open L-shell configurations. The 30%-45% underestimate in the modeled quasicontinuum opacity at short wavelengths was observed only from iron and only at temperature above 180 eV. Thus, either opacity theories are missing physics that has nonmonotonic dependence on the number of bound electrons or there is an experimental flaw unique to the iron measurement at temperatures above 180 eV.

2.
Phys Rev E ; 95(6-1): 063206, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28709238

RESUMO

Iron opacity calculations presently disagree with measurements at an electron temperature of ∼180-195 eV and an electron density of (2-4)×10^{22}cm^{-3}, conditions similar to those at the base of the solar convection zone. The measurements use x rays to volumetrically heat a thin iron sample that is tamped with low-Z materials. The opacity is inferred from spectrally resolved x-ray transmission measurements. Plasma self-emission, tamper attenuation, and temporal and spatial gradients can all potentially cause systematic errors in the measured opacity spectra. In this article we quantitatively evaluate these potential errors with numerical investigations. The analysis exploits computer simulations that were previously found to reproduce the experimentally measured plasma conditions. The simulations, combined with a spectral synthesis model, enable evaluations of individual and combined potential errors in order to estimate their potential effects on the opacity measurement. The results show that the errors considered here do not account for the previously observed model-data discrepancies.

4.
Phys Rev E ; 93(2): 023202, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26986427

RESUMO

Recently, frequency-resolved iron opacity measurements at electron temperatures of 170-200 eV and electron densities of (0.7-4.0)×10(22)cm(-3) revealed a 30-400% disagreement with the calculated opacities [J. E. Bailey et al., Nature (London) 517, 56 (2015)]. The discrepancies have a high impact on astrophysics, atomic physics, and high-energy density physics, and it is important to verify our understanding of the experimental platform with simulations. Reliable simulations are challenging because the temporal and spatial evolution of the source radiation and of the sample plasma are both complex and incompletely diagnosed. In this article, we describe simulations that reproduce the measured temperature and density in recent iron opacity experiments performed at the Sandia National Laboratories Z facility. The time-dependent spectral irradiance at the sample is estimated using the measured time- and space-dependent source radiation distribution, in situ source-to-sample distance measurements, and a three-dimensional (3D) view-factor code. The inferred spectral irradiance is used to drive 1D sample radiation hydrodynamics simulations. The images recorded by slit-imaged space-resolved spectrometers are modeled by solving radiation transport of the source radiation through the sample. We find that the same drive radiation time history successfully reproduces the measured plasma conditions for eight different opacity experiments. These results provide a quantitative physical explanation for the observed dependence of both temperature and density on the sample configuration. Simulated spectral images for the experiments without the FeMg sample show quantitative agreement with the measured spectral images. The agreement in spectral profile, spatial profile, and brightness provides further confidence in our understanding of the backlight-radiation time history and image formation. These simulations bridge the static-uniform picture of the data interpretation and the dynamic-gradient reality of the experiments, and they will allow us to quantitatively assess the impact of effects neglected in the data interpretation.

5.
Nature ; 517(7532): 56-9, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25557711

RESUMO

Nearly a century ago it was recognized that radiation absorption by stellar matter controls the internal temperature profiles within stars. Laboratory opacity measurements, however, have never been performed at stellar interior conditions, introducing uncertainties in stellar models. A particular problem arose when refined photosphere spectral analysis led to reductions of 30-50 per cent in the inferred amounts of carbon, nitrogen and oxygen in the Sun. Standard solar models using the revised element abundances disagree with helioseismic observations that determine the internal solar structure using acoustic oscillations. This could be resolved if the true mean opacity for the solar interior matter were roughly 15 per cent higher than predicted, because increased opacity compensates for the decreased element abundances. Iron accounts for a quarter of the total opacity at the solar radiation/convection zone boundary. Here we report measurements of wavelength-resolved iron opacity at electron temperatures of 1.9-2.3 million kelvin and electron densities of (0.7-4.0) × 10(22) per cubic centimetre, conditions very similar to those in the solar region that affects the discrepancy the most: the radiation/convection zone boundary. The measured wavelength-dependent opacity is 30-400 per cent higher than predicted. This represents roughly half the change in the mean opacity needed to resolve the solar discrepancy, even though iron is only one of many elements that contribute to opacity.

6.
Phys Rev Lett ; 111(4): 045001, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23931375

RESUMO

Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell emission. The Cu and Ge dopants placed at different radial locations in the plastic ablator show the ablation-front hydrodynamic instability is primarily responsible for hot-spot mix. Low neutron yields and hot-spot mix mass between 34(-13,+50) ng and 4000(-2970,+17 160) ng are observed.

7.
Rev Sci Instrum ; 83(10): 10E128, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126949

RESUMO

Experiments have been performed at Sandia National Laboratories Z-facility to validate iron opacity models relevant to the solar convection/radiation zone boundary. Sample conditions were measured by mixing Mg with the Fe and using Mg K-shell line transmission spectra, assuming that the plasma was uniform. We develop a spectral model that accounts for hypothetical gradients, and compute synthetic spectra to quantitatively evaluate the plasma gradient size that can be diagnosed. Two sample designs are investigated, assuming linear temperature and density gradients. First, Mg uniformly mixed with Fe enables temperature gradients greater than 10% to be detected. The second design uses Mg mixed into one side and Al mixed into the other side of the sample in an attempt to more accurately infer the sample gradient. Both temperature and density gradients as small as a few percent can be detected with this design. Experiments have successfully recorded spectra with the second design. In future research, the spectral model will be used to place bounds on gradients that exist in Z opacity experiments.

8.
Rev Sci Instrum ; 79(11): 113104, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19045886

RESUMO

Understanding stellar interiors, inertial confinement fusion, and Z pinches depends on opacity models for mid-Z plasmas in the 100-300 eV temperature range. These models are complex and experimental validation is crucial. In this paper we describe the diagnosis of the first experiments to measure iron plasma opacity at a temperature high enough to produce the charge states and electron configurations that exist in the solar interior. The dynamic Hohlraum x-ray source at Sandia National Laboratories' Z facility was used to both heat and backlight Mg/Fe CH tamped foils. The backlighter equivalent brightness temperature was estimated to be T(r) approximately 314 eV+/-8% using time-resolved x-ray power and imaging diagnostics. This high brightness is significant because it overwhelms the sample self-emission. The sample transmission in the 7-15.5 A range was measured using two convex potassium acid phthalate crystal spectrometers that view the backlighter through the sample. The average spectral resolution over this range was estimated to be lambda/deltalambda approximately 700 by comparing theoretical crystal resolution calculations with measurements at 7.126, 8.340, and 12.254 A. The electron density was determined to be n(e)=6.9+/-1.7 x 10(21) cm(-3) using the Stark-broadened Mg Hebeta, Hegamma, and Hedelta lines. The temperature inferred from the H-like to He-like Mg line ratios was T(e)=156+/-6 eV. Comparisons with three different spectral synthesis models all have normalized chi(2) that is close to unity, indicating quantitative consistency in the inferred plasma conditions. This supports the reliability of the results and implies the experiments are suitable for testing iron opacity models.

9.
Phys Rev Lett ; 100(12): 125004, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18517878

RESUMO

The Z-pinch dynamic hohlraum is an x-ray source for high energy-density physics studies that is heated by a radiating shock to radiation temperatures >200 eV. The time-dependent 300-400 eV electron temperature and 15-35 mg/cc density of this shock have been measured for the first time using space-resolved Si tracer spectroscopy. The shock x-ray emission is inferred from these measurements to exceed 50 TW, delivering >180 kJ to the hohlraum.

10.
Phys Rev Lett ; 99(26): 265002, 2007 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-18233582

RESUMO

Measurements of iron-plasma transmission at 156+/-6 eV electron temperature and 6.9+/-1.7 x 10(21) cm(-3) electron density are reported over the 800-1800 eV photon energy range. The temperature is more than twice that in prior experiments, permitting the first direct experimental tests of absorption features critical for understanding solar interior radiation transport. Detailed line-by-line opacity models are in excellent agreement with the data.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(5 Pt 2): 056403, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18233772

RESUMO

In the field of inertial confinement fusion (ICF), work has been consistently progressing in the past decade toward a more fundamental understanding of the plasma conditions in ICF implosion cores. The research presented here represents a substantial evolution in the ability to diagnose plasma temperatures and densities, along with characteristics of mixing between fuel and shell materials. Mixing is a vital property to study and quantify, since it can significantly affect implosion quality. We employ a number of new spectroscopic techniques that allow us to probe these important quantities. The first technique developed is an emissivity analysis, which uses the emissivity ratio of the optically thin Lybeta and Hebeta lines to spectroscopically extract temperature profiles, followed by the solution of emissivity equations to infer density profiles. The second technique, an intensity analysis, models the radiation transport through the implosion core. The nature of the intensity analysis allows us to use an optically thick line, the Lyalpha, to extract information on mixing near the core edge. With this work, it is now possible to extract directly from experimental data not only detailed temperature and density maps of the core, but also spatial mixing profiles.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(6 Pt 2): 066403, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16486066

RESUMO

We present results from simulations performed to investigate the effects of dopant radiative cooling in inertial confinement fusion indirect-drive capsule implosion experiments. Using a one-dimensional radiation-hydrodynamics code that includes inline collisional-radiative modeling, we compute in detail the non-local thermodynamic equilibrium atomic kinetics and spectral characteristics for Ar-doped DD fuel. Specifically, we present results from a series of calculations in which the concentration of the Ar is varied, and examine the sensitivity of the fuel conditions (e.g., electron temperature) and neutron yield to the Ar dopant concentration. Simulation results are compared with data obtained in OMEGA indirect-drive experiments in which monochromatic imaging and spectral measurements of Ar Hebeta and Lybeta line emission were recorded. The incident radiation drive on the capsule is computed with a three-dimensional view factor code using the laser beam pointings and powers from the OMEGA experiments. We also examine the sensitivity of the calculated compressed core electron temperatures and neutron yields to the radiation drive on the capsule and to the radiation and atomic modeling in the simulations.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(6 Pt 2): 066405, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16486068

RESUMO

High-power Z pinches on Sandia National Laboratories' Z facility can be used in a variety of experiments to radiatively heat samples placed some distance away from the Z-pinch plasma. In such experiments, the heating radiation spectrum is influenced by both the Z-pinch emission and the re-emission of radiation from the high-Z surfaces that make up the Z-pinch diode. To test the understanding of the amplitude and spectral distribution of the heating radiation, thin foils containing both Al and MgF2 were heated by a 100-130 TW Z pinch. The heating of these samples was studied through the ionization distribution in each material as measured by x-ray absorption spectra. The resulting plasma conditions are inferred from a least-squares comparison between the measured spectra and calculations of the Al and Mg 1s-->2p absorption over a large range of temperatures and densities. These plasma conditions are then compared to radiation-hydrodynamics simulations of the sample dynamics and are found to agree within 1sigma to the best-fit conditions. This agreement indicates that both the driving radiation spectrum and the heating of the Al and MgF2 samples is understood within the accuracy of the spectroscopic method.

14.
Phys Rev Lett ; 92(8): 085002, 2004 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-14995784

RESUMO

Hot dense capsule implosions driven by Z-pinch x rays have been measured using a approximately 220 eV dynamic Hohlraum to implode 1.7-2.1 mm diameter gas-filled CH capsules. The capsules absorbed up to approximately 20 kJ of x rays. Argon tracer atom spectra were used to measure the T(e) approximately 1 keV electron temperature and the n(e) approximately 1-4 x 10(23) cm(-3) electron density. Spectra from multiple directions provide core symmetry estimates. Computer simulations agree well with the peak emission values of T(e), n(e), and symmetry, indicating reasonable understanding of the Hohlraum and implosion physics.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(4 Pt 2): 046416, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12443339

RESUMO

Absorption spectroscopy measurements of the time-dependent heating of thin foils exposed to intense z-pinch radiation sources are presented. These measurements and their analysis provide valuable benchmarks for, and insights into, the radiative heating of matter by x-ray sources. Z-pinch radiation sources with peak powers of up to 160 TW radiatively heated thin plastic-tamped aluminum foils to temperatures approximately 60 eV. The foils were located in open slots at the boundary of z-pinch hohlraums surrounding the pinch. Time-resolved Kalpha satellite absorption spectroscopy was used to measure the evolution of the Al ionization distribution, using a geometry in which the pinch served as the backlighter. The time-dependent pinch radius and x-ray power were monitored using framing camera, x-ray diode array, and bolometer measurements. A three-dimensional view factor code, within which one-dimensional (1D) radiation-hydrodynamics calculations were performed for each surface element in the view factor grid, was used to compute the incident and reemitted radiation flux distribution throughout the hohlraum and across the foil surface. Simulated absorption spectra were then generated by postprocessing radiation-hydrodynamics results for the foil heating using a 1D collisional-radiative code. Our simulated results were found to be in good general agreement with experimental x-ray spectra, indicating that the spectral measurements are consistent with independent measurements of the pinch power. We also discuss the sensitivity of our results to the spectrum of the radiation field incident on the foil, and the role of nonlocal thermodynamic equilibrium atomic kinetics in affecting the spectra.

16.
Meat Sci ; 17(3): 161-76, 1986.
Artigo em Inglês | MEDLINE | ID: mdl-22055273

RESUMO

The effects on muscle of a combined pressure-heat (P-H) treatment that overcomes myofibrillar toughness have been investigated using SDS gel electrophoresis and electron microscopy. Densitometer scans of polyacrylamide gels of muscle extracts revealed that P-H treatment caused greater degradation of connectin than did heat treatment alone. Breakdown of connection by P-H treatment was reduced in muscle that had been injected with the protease inhibitor pepstatin. However, pepstatin treatment did not reduce the effectiveness of P-H treatment for tenderizing meat, as would be expected if connectin was responsible for myofibrillar toughness. P-H treatment resulted in an increase in the intensity of a peak with M(r) ∼ 150 000, but this peak was also produced by non-tenderizing pressure treatments. The ultrastructural studies revealed that P-H treatment disrupted the thick and the thin filaments, leaving voids at the M-line region. It is suggested that P-H treatment achieves most of its effect by an irreversible disaggregation of the myosin of thick filaments.

17.
Meat Sci ; 10(4): 285-92, 1984.
Artigo em Inglês | MEDLINE | ID: mdl-22054562

RESUMO

A pressure-heat treatment, which disrupts the myofibrillar structure of meat but leaves the connective tissues essentially intact, was used to compare the connective tissue component of toughness in the Semimembranosus and Longissimus dorsi muscles from nine Brahman cross and nine buffalo steers, 24 to 29 months of age. For assessment of samples, peak force, initial yield force and peak force minus initial yield force values were determined from Warner-Bratzler shear force-deformation curves. In the control, non-pressure-heat treated samples, the only breed difference detected was in peak minus initial yield force value, which was significantly lower for the beef Semimembranosus muscles. However, for the pressure-heat treated samples of both muscles, peak force and peak minus initial yield force values were significantly lower for beef than for buffalo. The pressure-heat treatment could thus be used to detect differences in the contribution of connective tissue to toughness which would otherwise be obscured by the differences in the myofibrillar toughness.

18.
Meat Sci ; 10(4): 307-20, 1984.
Artigo em Inglês | MEDLINE | ID: mdl-22054564

RESUMO

Patties prepared from comminuted meat were pressure-treated at up to 150 MPa at 0-3°C and the cohesion between meat particles in the cooked patty investigated from tensile strength measurements. Pressure treatment increased tensile strength, the magnitude of the increase depending upon the intensity and duration of pressure treatment, the concentration of salt in the patty and pH value. The effect was most pronounced in patties of pH 5 to 6 and with 1% salt in the aqueous phase. Under these conditions cooking losses were reduced. When compared with the effect of addition of 0·5% tetrasodium pyrophosphate in a patty with 1% salt, pressure treatment retained its effect at lower pH values.

19.
Meat Sci ; 11(4): 263-74, 1984.
Artigo em Inglês | MEDLINE | ID: mdl-22055000

RESUMO

The effect on the heat-setting characteristics of myosin of pressure treatment up to 150 MPa at 0 to 40°C has been assessed by measuring the work done in inserting a plunger into samples after heating them at up to 70°C. The response depended upon the ionic strength and the pH of the myosin suspension, and the intensity and duration of pressure treatment. It was most pronounced at pressures of 75 MPa or greater applied for some minutes to myosin in 0·2-0·3m NaCl at about pH 6. It is suggested that the alteration in heat-setting properties is due to depolymerization, under pressure, of myosin filaments accompanied by a conformational change of the monomer so that it reaggregates in a different manner upon release of pressure.

20.
Meat Sci ; 6(1): 27-36, 1982 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22054704

RESUMO

Initial yield and peak shear force values obtained for stretched muscles cooked at 80°C for different times decreased linearly at a similar rate with increasing pH, which is consistent with the prime effect of pH being on the myofibrillar structure. The tenderising effect of pressure-heat treatment on stretched and cold-shortened muscle decreased rapidly with increase in ultimate pH until, at values near 7, the effect disappeared. Increased ultimate pH effectively eliminated the large increase in shear force values, occurring in cold-shortened muscle of normal pH and attributable to heat denaturation of myosin, as cooking temperature was increased above 60°C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...