Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 108(1): 91-101, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33349932

RESUMO

PREMISE: The xylem tissue of plants performs three principal functions: transport of water, support of the plant body, and nutrient storage. Tradeoffs may arise because different structural requirements are associated with different functions or because suites of traits are under selection that relate to resource acquisition, use, and turnover. The structural and functional basis of xylem storage is not well established. We hypothesized that greater starch storage would be associated with greater sapwood parenchyma and reduced fibers, which would compromise resistance to xylem tensions during dehydration. METHODS: We measured cavitation resistance, minimum water potential, starch content, and sapwood parenchyma and fiber area in 30 species of southern California chaparral shrubs (evergreen and deciduous). RESULTS: We found that species storing greater starch within their xylem tended to avoid dehydration and were less cavitation resistant, and this was supported by phylogenetic independent contrasts. Greater sapwood starch was associated with greater parenchyma area and reduced fiber area. For species without living fibers, the associations with parenchyma were stronger, suggesting that living fibers may expand starch storage capacity while also contributing to the support function of the vascular tissue. Drought-deciduous species were associated with greater dehydration avoidance than evergreens. CONCLUSIONS: Evolutionary forces have led to an association between starch storage and dehydration resistance as part of an adaptive suite of traits. We found evidence for a tradeoff between tissue mechanical traits and starch storage; moreover, the evolution of novel strategies, such as starch-storing living fibers, may mitigate the strength of this tradeoff.


Assuntos
Secas , Amido , Desidratação , Humanos , Filogenia , Água , Xilema
2.
PLoS One ; 11(7): e0159145, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27391489

RESUMO

Chaparral is the most abundant vegetation type in California and current climate change models predict more frequent and severe droughts that could impact plant community structure. Understanding the factors related to species-specific drought mortality is essential to predict such changes. We predicted that life history type, hydraulic traits, and plant size would be related to the ability of species to survive drought. We evaluated the impact of these factors in a mature chaparral stand during the drought of 2014, which has been reported as the most severe in California in the last 1,200 years. We measured tissue water potential, native xylem specific conductivity, leaf specific conductivity, percentage loss in conductivity, and chlorophyll fluorescence for 11 species in February 2014, which was exceptionally dry following protracted drought. Mortality among the 11 dominant species ranged from 0 to 93%. Total stand density was reduced 63.4% and relative dominance of species shifted after the drought. Mortality was negatively correlated with water potential, native xylem specific conductivity, and chlorophyll fluorescence, but not with percent loss in hydraulic conductivity and leaf specific conductivity. The model that best explained mortality included species and plant size as main factors and indicated that larger plants had greater survival for 2 of the species. In general, species with greater resistance to water-stress induced cavitation showed greater mortality levels. Despite adult resprouters typically being more vulnerable to cavitation, results suggest that their more extensive root systems enable them to better access soil moisture and avoid harmful levels of dehydration. These results are consistent with the hypothesis that short-term high intensity droughts have the strongest effect on mature plants of shallow-rooted dehydration tolerant species, whereas deep-rooted dehydration avoiding species fare better in the short-term. Severe droughts can drive changes in chaparral structure as a result of the differential mortality among species.


Assuntos
Secas , California , Clorofila/metabolismo , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Transpiração Vegetal/fisiologia , Xilema/metabolismo , Xilema/fisiologia
3.
Plant Cell Environ ; 38(6): 1060-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25292257

RESUMO

Xylem resistance to water stress-induced cavitation is an important trait that is associated with drought tolerance of plants. The level of xylem cavitation experienced by a plant is often assessed as the percentage loss in conductivity (PLC) at different water potentials. Such measurements are constructed with samples that are excised underwater at native tensions. However, a recent study concluded that cutting conduits under significant tension induced cavitation, even when samples were held underwater during cutting. This resulted in artificially increased PLC because of what we have termed a 'tension-cutting artefact'. We tested the hypothesized tension-cutting artefact on five species by measuring PLC at native tension compared with after xylem tensions had been relaxed. Our results did not support the tension-cutting artefact hypothesis, as no differences were observed between native and relaxed samples in four of five species. In a fifth species (Laurus nobilis), differences between native and relaxed samples appear to be due to vessel refilling rather than a tension-cutting effect. We avoided the tension-cutting artefact by cutting samples to slightly longer than their measurement length and subsequent trimming of at least 0.5 cm of sample ends prior to measurement.


Assuntos
Caules de Planta/fisiologia , Xilema/fisiologia , Desidratação/fisiopatologia , Fraxinus/fisiologia , Laurus/fisiologia , Ligustrum/fisiologia , Pressão Osmótica/fisiologia , Salix/fisiologia , Sambucus nigra/fisiologia , Água
4.
New Phytol ; 205(1): 116-27, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25229841

RESUMO

The standard centrifuge method has been frequently used to measure vulnerability to xylem cavitation. This method has recently been questioned. It was hypothesized that open vessels lead to exponential vulnerability curves, which were thought to be indicative of measurement artifact. We tested this hypothesis in stems of olive (Olea europea) because its long vessels were recently claimed to produce a centrifuge artifact. We evaluated three predictions that followed from the open vessel artifact hypothesis: shorter stems, with more open vessels, would be more vulnerable than longer stems; standard centrifuge-based curves would be more vulnerable than dehydration-based curves; and open vessels would cause an exponential shape of centrifuge-based curves. Experimental evidence did not support these predictions. Centrifuge curves did not vary when the proportion of open vessels was altered. Centrifuge and dehydration curves were similar. At highly negative xylem pressure, centrifuge-based curves slightly overestimated vulnerability compared to the dehydration curve. This divergence was eliminated by centrifuging each stem only once. The standard centrifuge method produced accurate curves of samples containing open vessels, supporting the validity of this technique and confirming its utility in understanding plant hydraulics. Seven recommendations for avoiding artefacts and standardizing vulnerability curve methodology are provided.


Assuntos
Centrifugação/métodos , Olea/anatomia & histologia , Olea/fisiologia , Caules de Planta/anatomia & histologia , Caules de Planta/fisiologia , Desidratação , Pressão , Vácuo , Água , Xilema/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...