Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Quant Plant Biol ; 5: e5, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774130

RESUMO

Plant growth requires the integration of internal and external cues, perceived and transduced into a developmental programme of cell division, elongation and wall thickening. Mechanical forces contribute to this regulation, and thigmomorphogenesis typically includes reducing stem height, increasing stem diameter, and a canonical transcriptomic response. We present data on a bZIP transcription factor involved in this process in grasses. Brachypodium distachyon SECONDARY WALL INTERACTING bZIP (SWIZ) protein translocated into the nucleus following mechanostimulation. Classical touch-responsive genes were upregulated in B. distachyon roots following touch, including significant induction of the glycoside hydrolase 17 family, which may be unique to grass thigmomorphogenesis. SWIZ protein binding to an E-box variant in exons and introns was associated with immediate activation followed by repression of gene expression. SWIZ overexpression resulted in plants with reduced stem and root elongation. These data further define plant touch-responsive transcriptomics and physiology, offering insights into grass mechanotranduction dynamics.

2.
New Phytol ; 227(6): 1709-1724, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32112414

RESUMO

Plants are continuously exposed to diurnal fluctuations in light and temperature, and spontaneous changes in their physical or biotic environment. The circadian clock coordinates regulation of gene expression with a 24 h period, enabling the anticipation of these events. We used RNA sequencing to characterize the Brachypodium distachyon transcriptome under light and temperature cycles, as well as under constant conditions. Approximately 3% of the transcriptome was regulated by the circadian clock, a smaller proportion than reported in most other species. For most transcripts that were rhythmic under all conditions, including many known clock genes, the period of gene expression lengthened from 24 to 27 h in the absence of external cues. To functionally characterize the cyclic transcriptome in B. distachyon, we used Gene Ontology enrichment analysis, and found several terms significantly associated with peak expression at particular times of the day. Furthermore, we identified sequence motifs enriched in the promoters of similarly phased genes, some potentially associated with transcription factors. When considering the overlap in rhythmic gene expression and specific pathway behavior, thermocycles was the prevailing cue that controlled diurnal gene regulation. Taken together, our characterization of the rhythmic B. distachyon transcriptome represents a foundational resource with implications in other grass species.


Assuntos
Brachypodium , Brachypodium/genética , Ritmo Circadiano/genética , Sinais (Psicologia) , Regulação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Temperatura
3.
Plant J ; 96(3): 532-545, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30054951

RESUMO

Grass biomass is comprised chiefly of secondary walls that surround fiber and xylem cells. A regulatory network of interacting transcription factors in part regulates cell wall thickening. We identified Brachypodium distachyon SECONDARY WALL ASSOCIATED MYB1 (SWAM1) as a potential regulator of secondary cell wall biosynthesis based on gene expression, phylogeny, and transgenic plant phenotypes. SWAM1 interacts with cellulose and lignin gene promoters with preferential binding to AC-rich sequence motifs commonly found in the promoters of cell wall-related genes. SWAM1 overexpression (SWAM-OE) lines had greater above-ground biomass with only a slight change in flowering time while SWAM1 dominant repressor (SWAM1-DR) plants were severely dwarfed with a striking reduction in lignin of sclerenchyma fibers and stem epidermal cell length. Cellulose, hemicellulose, and lignin genes were significantly down-regulated in SWAM1-DR plants and up-regulated in SWAM1-OE plants. There was no reduction in bioconversion yield in SWAM1-OE lines; however, it was significantly increased for SWAM1-DR samples. Phylogenetic and syntenic analyses strongly suggest that the SWAM1 clade was present in the last common ancestor between eudicots and grasses, but is not in the Brassicaceae. Collectively, these data suggest that SWAM1 is a transcriptional activator of secondary cell wall thickening and biomass accumulation in B. distachyon.


Assuntos
Brachypodium/genética , Proteínas de Plantas/genética , Biomassa , Brachypodium/crescimento & desenvolvimento , Brassicaceae/genética , Brassicaceae/crescimento & desenvolvimento , Parede Celular/metabolismo , Celulose/metabolismo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Polissacarídeos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Front Plant Sci ; 9: 1895, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627134

RESUMO

Arabidopsis thaliana CELLULOSE SYNTHASE A4/7/8 (CESA4/7/8) are three non-redundant subunits of the secondary cell wall cellulose synthase complex. Transcript abundance of these genes can vary among genotypes and expression quantitative trait loci (eQTL) were identified in a recombinant population of the accessions Bay-0 and Shahdara. Genetic mapping and analysis of the transcript levels of CESAs between two distinct near isogenic lines (NILs) confirmed a change in CESA4 expression that segregates within that interval. We sequenced the promoters and identified 16 polymorphisms differentiating CESA4Sha and CESA4Bay . In order to determine which of these SNPs could be responsible for this eQTL, we screened for transcription factor protein affinity with promoter fragments of CESA4Bay, CESA4Sha , and the reference genome CESA4Col . The wall thickening activator proteins NAC SECONDARY WALL THICKENING PROMOTING FACTOR2 (NST2) and NST3 exhibited a decrease in binding with the CESA4Sha promoter with a tracheary element-regulating cis-element (TERE) polymorphism. While NILs harboring the TERE polymorphisms exhibited significantly different CESA4 expression, cellulose crystallinity and cell wall thickness were indistinguishable. These results suggest that the TERE polymorphism resulted in differential transcription factor binding and CESA4 expression; yet A. thaliana is able to tolerate this transcriptional variability without compromising the structural elements of the plant, providing insight into the elasticity of gene regulation as it pertains to cell wall biosynthesis and regulation. We also explored available DNA affinity purification sequencing data to resolve a core binding site, C(G/T)TNNNNNNNA(A/C)G, for secondary wall NACs referred to as the VNS element.

5.
PLoS One ; 9(6): e100072, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24927130

RESUMO

Plant growth is commonly regulated by external cues such as light, temperature, water availability, and internal cues generated by the circadian clock. Changes in the rate of growth within the course of a day have been observed in the leaves, stems, and roots of numerous species. However, the relative impact of the circadian clock on the growth of grasses has not been thoroughly characterized. We examined the influence of diurnal temperature and light changes, and that of the circadian clock on leaf length growth patterns in Brachypodium distachyon using high-resolution time-lapse imaging. Pronounced changes in growth rate were observed under combined photocyles and thermocycles or with thermocycles alone. A considerably more rapid growth rate was observed at 28°C than 12°C, irrespective of the presence or absence of light. In spite of clear circadian clock regulated gene expression, plants exhibited no change in growth rate under conditions of constant light and temperature, and little or no effect under photocycles alone. Therefore, temperature appears to be the primary cue influencing observed oscillations in growth rate and not the circadian clock or photoreceptor activity. Furthermore, the size of the leaf meristem and final cell length did not change in response to changes in temperature. Therefore, the nearly five-fold difference in growth rate observed across thermocycles can be attributed to proportionate changes in the rate of cell division and expansion. A better understanding of the growth cues in B. distachyon will further our ability to model metabolism and biomass accumulation in grasses.


Assuntos
Brachypodium/crescimento & desenvolvimento , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Temperatura , Brachypodium/genética , Brachypodium/efeitos da radiação , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Fotoperíodo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA