Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2583: 129-148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36418731

RESUMO

With its sensitivity to soft tissue, MRI is a powerful tool for the study of the neuroanatomical manifestations of a variety of conditions, such as microcephaly-related morbidities that are not easily visualized by other imaging techniques, such as CT. In addition to structural imaging, more recently, researchers have found changes in brain function in a wide range of neurological conditions-highlighting the utility of MRI for the study of microcephaly.In this methods chapter, basic mouse preparation and the acquisition of data for in vivo anatomical MRI will be discussed. Additionally, we will provide our protocol for the perfusion and fixation of brain tissue with gadolinium contrast agent. Following that, the process of optimization of system parameters will be shown for anatomical imaging of in vivo and ex vivo brain tissue. Lastly, the chapter will detail a protocol for fcMRI along with a discussion of considerations specific to functional imaging.


Assuntos
Microcefalia , Animais , Camundongos , Microcefalia/diagnóstico por imagem , Neuroimagem , Imageamento por Ressonância Magnética , Gadolínio , Encéfalo/diagnóstico por imagem
2.
Magn Reson Med ; 86(2): 1058-1066, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33755248

RESUMO

PURPOSE: QuEnch-assiSTed (QUEST) MRI provides a unique biomarker of excessive production of paramagnetic free radicals (oxidative stress) in vivo. The contribution from superoxide, a common upstream species found in oxidative stress-based disease, to the QUEST metric is unclear. Here, we begin to address this question by measuring superoxide spin-lattice relaxivity (r1) in phantoms. METHODS: Stable superoxide free radicals were generated in water phantoms of potassium superoxide ( KO2) . To measure r1, 1/T1 of different concentration solutions of KO2 in the presence and absence of the antioxidant superoxide dismutase were measured. The 1/T1 confounding factors including acquisition sequence, pH, and water source were also evaluated. RESULTS: The T1 -weighted signal intensity increased with KO2 concentration. No contribution from pH, or reaction products other than superoxide, noted on 1/T1 . Superoxide r1 was measured to be 0.29 mM-1  s-1 , in agreement with that reported for paramagnetic molecular oxygen and nitroxide free radicals. CONCLUSION: Our first-in-kind measurement of superoxide free radical r1 suggests a detection sensitivity of QUEST MRI on the order of tens of µM, within the reported level of free radical production during oxidative stress in vivo. Similar studies for other common free radicals are needed.


Assuntos
Imageamento por Ressonância Magnética , Superóxidos , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres , Estresse Oxidativo , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA