Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 11(1): 57-63, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30420777

RESUMO

Although N-heterocyclic carbenes (NHCs) have demonstrated outstanding potential for use as surface anchors, synthetic challenges have limited their application to either large planar substrates or very small spherical nanoparticles. The development of a strategy to graft NHCs onto non-spherical nanomaterials, such as gold nanorods, would greatly expand their utility as surface ligands. Here, we use a bidentate thiolate-NHC-gold(I) complex that is easily grafted onto commercial cetyl trimethylammonium bromide-stabilized gold nanorods through ligand exchange. On mild reduction of the resulting surface-tethered NHC-gold(I) complexes, the gold atom attached to the NHC complex is added to the surface as an adatom, thereby precluding the need for reorganization of the underlying surface lattice upon NHC binding. The resulting thiolate-NHC-stabilized gold nanorods are stable towards excess glutathione for up to six days, and under conditions with large variations in pH, high and low temperatures, high salt concentrations, or in biological media and cell culture. We also demonstrate the utility of these nanorods for in vitro photothermal therapy.


Assuntos
Ouro/química , Metano/análogos & derivados , Nanotubos/química , Compostos de Sulfidrila/química , Teoria da Densidade Funcional , Metano/química , Microscopia Eletrônica de Transmissão , Espectrofotometria Ultravioleta
2.
J Am Chem Soc ; 139(6): 2257-2266, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28151662

RESUMO

Strategies for switching polymerizations between "ON" and "OFF" states offer new possibilities for materials design and fabrication. While switching of controlled radical polymerization has been achieve using light, applied voltage, allosteric effects, chemical reagents, pH, and mechanical force, it is still challenging to introduce multiple external switches using the same catalyst to achieve logic gating of controlled polymerization reactions. Herein, we report an easy-to-synthesize thermally responsive organo-/hydro-gel that features covalently bound 10-phenylphenothiazine (PTH). With this "Gel-PTH", we demonstrate switching of controlled radical polymerization reactions using temperature "LOW"/"HIGH", light "ON"/"OFF", and catalyst presence "IN"/"OUT". Various iniferters/initiators and a wide range of monomers including acrylates, methacrylates, acrylamides, vinyl esters, and vinyl amides were polymerized by RAFT/iniferter and ATRP methods using Gel-PTH and a readily available compact fluorescent light (CFL) source. In all cases, polymer molar masses increased linearly with conversion, and narrow molar mass distributions were obtained. To further highlight the utility of Gel-PTH, we achieved "AND" gating of controlled radical polymerization wherein various combinations of three stimuli were required to induce polymer chain growth. Finally, block copolymer synthesis and catalyst recycling were demonstrated. Logic-controlled polymerization with Gel-PTH offers a straightforward approach to achieve multiplexed external switching of polymer chain growth using a single catalyst without the need for addition of exogenous reagents.

4.
J Am Chem Soc ; 137(25): 7974-7, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26081724

RESUMO

N-Heterocyclic carbenes (NHCs) have emerged as versatile ligands for surface functionalization. Their ease of synthesis and ability to form strong bonds with a range of substrates provide a unique complement to traditional surface modification methods. Gold nanoparticles (NPs) are a particularly useful class of materials whose applications intimately depend on surface functionalization. Here we report the development of PEGylated-NHC ligands for Au-NP surfaces and the first example of NHC-functionalized NPs that are compatible with biologically relevant conditions. Our PEGylated-NHC-Au-NPs are stable toward aggregation in aqueous solutions in the pH range of 3-14, in <250 mM electrolyte solutions, at high and low temperatures (95 and -78 °C), in cell culture media, and in aqueous H2O2 solutions. This work demonstrates for the first time that NHCs can serve as anchors for water-soluble Au-NPs and opens the door to potential biomedical applications of NHC surface anchors.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Metano/análogos & derivados , Polietilenoglicóis/química , Soluções Tampão , Cristalografia por Raios X , Meios de Cultura/química , Peróxido de Hidrogênio/química , Ligantes , Nanopartículas Metálicas/ultraestrutura , Metano/química , Modelos Moleculares , Solubilidade , Propriedades de Superfície
5.
ACS Macro Lett ; 4(5): 566-569, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35596283

RESUMO

Living radical polymerization of acrylates and acrylamides from trithiocarbonate iniferters using a compact fluorescent lamp (CFL) bulb and 10-phenylphenothiazine as an organic photoredox catalyst is reported. With this system, chain growth can be efficiently switched between "on" and "off" in response to visible light. Polymer molar masses increase linearly with conversion, and narrow molar mass distributions are obtained. The excellent fidelity of the trithiocarbonate-iniferter enables the preparation of triblock copolymers from macro-iniferters under the same visible-light mediated protocol, using UV light without a photoredox catalyst or under traditional thermally induced RAFT conditions. We expect that the simplicity and efficiency of this metal-free, visible-light-mediated polymerization will enable the synthesis and modification of a range of materials under mild conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...