Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(4): 1687-1706, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36727434

RESUMO

Positive transcription elongation factor b (P-TEFb) is the crucial player in RNA polymerase II (Pol II) pause release that has emerged as a promising target in cancer. Because single-agent therapy may fail to deliver durable clinical response, targeting of P-TEFb shall benefit when deployed as a combination therapy. We screened a comprehensive oncology library and identified clinically relevant antimetabolites and Mouse double minute 2 homolog (MDM2) inhibitors as top compounds eliciting p53-dependent death of colorectal cancer cells in synergy with selective inhibitors of P-TEFb. While the targeting of P-TEFb augments apoptosis by anti-metabolite 5-fluorouracil, it switches the fate of cancer cells by the non-genotoxic MDM2 inhibitor Nutlin-3a from cell-cycle arrest to apoptosis. Mechanistically, the fate switching is enabled by the induction of p53-dependent pro-apoptotic genes and repression of P-TEFb-dependent pro-survival genes of the PI3K-AKT signaling cascade, which stimulates caspase 9 and intrinsic apoptosis pathway in BAX/BAK-dependent manner. Finally, combination treatments trigger apoptosis of cancer cell spheroids. Together, co-targeting of P-TEFb and suppressors of intrinsic apoptosis could become a viable strategy to eliminate cancer cells.


Assuntos
Apoptose , Fator B de Elongação Transcricional Positiva , Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Linhagem Celular Tumoral , Sobrevivência Celular , Fosfatidilinositol 3-Quinases/metabolismo , Fator B de Elongação Transcricional Positiva/antagonistas & inibidores , Fator B de Elongação Transcricional Positiva/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Supressora de Tumor p53/genética , Humanos
2.
Curr Genet ; 67(4): 641-661, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33725138

RESUMO

The transcription factors Cat8 and Sip4 were described in Saccharomyces cerevisiae and Kluyveromyces lactis to have very similar DNA binding domains and to be necessary for derepression of a variety of genes under non-fermentative growth conditions via binding to the carbon source responsive elements (CSREs). The methylotrophic yeast Komagataella phaffii (syn Pichia pastoris) has two transcription factors (TFs), which are putative homologs of Cat8 based on sequence similarity, termed Cat8-1 and Cat8-2. It is yet unclear in which cellular processes they are involved and if one of them is actually the homolog of Sip4. To study the roles of the Cat8 homologs in K. phaffii, overexpression or deletion strains were generated for the two TFs. The ability of these mutant strains to grow on different carbon sources was tested, and transcript levels of selected genes from the carbon metabolism were quantified. Our experiments showed that the TFs are required for the growth of K. phaffii on C2 carbon sources, but not on glucose, glycerol or methanol. K. phaffii deleted for Cat8-1 showed impaired growth on acetate, while both Cat8-1 and Cat8-2 are involved in the growth of K. phaffii on ethanol. Correspondingly, both TFs are participating in the activation of ADH2, ALD4 and ACS1, three genes encoding enzymes important for the assimilation of ethanol. Different from S. cerevisiae and K. lactis, Cat8-1 is not regulating the transcription of the putative Sip4-family member Cat8-2 in K. phaffii. Furthermore, Cat8-1 is necessary for the activation of genes from the glyoxylate cycle, whereas Cat8-2 is necessary for the activation of genes from the carnitine shuttle. Neither Cat8-1 nor Cat8-2 are required for the activation of gluconeogenesis genes. Finally, the CAT8-2 gene is repressed by the Mig1-2 transcription factor on glucose and autorepressed by the Cat8-2 protein on all tested carbon sources. Our study identified the involvement of K. phaffii Cat8-1 and Cat8-2 in C2-metabolism, and highlighted similarities and differences to their homologs in other yeast species.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Glucose/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Fatores de Transcrição/genética , Álcool Desidrogenase/genética , Aldeído Desidrogenase/genética , Coenzima A Ligases/genética , Etanol/metabolismo , Regulação Fúngica da Expressão Gênica , Gluconeogênese/genética , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/genética , Saccharomyces cerevisiae , Saccharomycetales/genética
3.
Neurodegener Dis ; 17(4-5): 213-226, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28633139

RESUMO

BACKGROUND: Huntington disease (HD) is a fatal neurodegenerative disorder involving reduced muscle coordination, mental and behavioral changes, and testicular degeneration. In order to further clarify the decreased fertility and penetration ability of the spermatozoa of transgenic HD minipig boars (TgHD), we applied a set of mitochondrial metabolism (MM) parameter measurements to this promising biological material, which can be collected noninvasively in longitudinal studies. OBJECTIVE: We aimed to optimize methods for MM measurements in spermatozoa and to establish possible biomarkers of HD in TgHD spermatozoa expressing the N-terminal part of mutated human huntingtin. METHODS: Semen samples from 12 TgHD and wild-type animals, aged 12-65 months, were obtained repeatedly during the study. Respiration was measured by polarography, MM was assessed by the detection of oxidation of radiolabeled substrates (mitochondrial energy-generating system; MEGS), and the content of the oxidative phosphorylation system subunits was detected by Western blot. Three possibly interfering factors were statistically analyzed: the effect of HD, generation and aging. RESULTS: We found 5 MM parameters which were significantly diminished in TgHD spermatozoa and propose 3 specific MEGS incubations and complex I-dependent respiration as potential biomarkers of HD in TgHD spermatozoa. CONCLUSIONS: Our results suggest a link between the gain of toxic function of mutated huntingtin in TgHD spermatozoa and the observed MM and/or glycolytic impairment. We determined 4 biomarkers useful for HD phenotyping and experimental therapy monitoring studies in TgHD minipigs.


Assuntos
Doença de Huntington/complicações , Doença de Huntington/patologia , Mitocôndrias/metabolismo , Espermatozoides/metabolismo , Espermatozoides/patologia , Fatores Etários , Animais , Animais Geneticamente Modificados , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Masculino , Proteínas Mitocondriais/metabolismo , Mutação/genética , Fosforilação Oxidativa , Complexo Piruvato Desidrogenase/metabolismo , Respiração , Sêmen/metabolismo , Suínos , Porco Miniatura , Ácidos Tricarboxílicos/metabolismo , Repetições de Trinucleotídeos/genética
4.
Neurodegener Dis ; 16(3-4): 245-59, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26959244

RESUMO

BACKGROUND: Huntington's disease is induced by CAG expansion in a single gene coding the huntingtin protein. The mutated huntingtin (mtHtt) primarily causes degeneration of neurons in the brain, but it also affects peripheral tissues, including testes. OBJECTIVE: We studied sperm and testes of transgenic boars expressing the N-terminal region of human mtHtt. METHODS: In this study, measures of reproductive parameters and electron microscopy (EM) images of spermatozoa and testes of transgenic (TgHD) and wild-type (WT) boars of F1 (24-48 months old) and F2 (12-36 months old) generations were compared. In addition, immunofluorescence, immunohistochemistry, Western blot, hormonal analysis and whole-genome sequencing were done in order to elucidate the effects of mtHtt. RESULTS: Evidence for fertility failure of both TgHD generations was observed at the age of 13 months. Reproductive parameters declined and progressively worsened with age. EM revealed numerous pathological features in sperm tails and in testicular epithelium from 24- and 36-month-old TgHD boars. Moreover, immunohistochemistry confirmed significantly lower proliferation activity of spermatogonia in transgenic testes. mtHtt was highly expressed in spermatozoa and testes of TgHD boars and localized in all cells of seminiferous tubules. Levels of fertility-related hormones did not differ in TgHD and WT siblings. Genome analysis confirmed that insertion of the lentiviral construct did not interrupt any coding sequence in the pig genome. CONCLUSIONS: The sperm and testicular degeneration of TgHD boars is caused by gain-of-function of the highly expressed mtHtt.


Assuntos
Proteína Huntingtina/metabolismo , Mutação , Espermatozoides/metabolismo , Espermatozoides/patologia , Testículo/metabolismo , Testículo/patologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Animais Geneticamente Modificados , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Vetores Genéticos , Humanos , Proteína Huntingtina/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Lentivirus/genética , Masculino , Contagem de Espermatozoides , Suínos , Porco Miniatura
5.
J Huntingtons Dis ; 2(1): 47-68, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25063429

RESUMO

BACKGROUND: Some promising treatments for Huntington's disease (HD) may require pre-clinical testing in large animals. Minipig is a suitable species because of its large gyrencephalic brain and long lifespan. OBJECTIVE: To generate HD transgenic (TgHD) minipigs encoding huntingtin (HTT)1-548 under the control of human HTT promoter. METHODS: Transgenesis was achieved by lentiviral infection of porcine embryos. PCR assessment of gene transfer, observations of behavior, and postmortem biochemical and immunohistochemical studies were conducted. RESULTS: One copy of the human HTT transgene encoding 124 glutamines integrated into chromosome 1 q24-q25 and successful germ line transmission occurred through successive generations (F0, F1, F2 and F3 generations). No developmental or gross motor deficits were noted up to 40 months of age. Mutant HTT mRNA and protein fragment were detected in brain and peripheral tissues. No aggregate formation in brain up to 16 months was seen by AGERA and filter retardation or by immunostaining. DARPP32 labeling in WT and TgHD minipig neostriatum was patchy. Analysis of 16 month old sibling pairs showed reduced intensity of DARPP32 immunoreactivity in neostriatal TgHD neurons compared to those of WT. Compared to WT, TgHD boars by one year had reduced fertility and fewer spermatozoa per ejaculate. In vitro analysis revealed a significant decline in the number of WT minipig oocytes penetrated by TgHD spermatozoa. CONCLUSIONS: The findings demonstrate successful establishment of a transgenic model of HD in minipig that should be valuable for testing long term safety of HD therapeutics. The emergence of HD-like phenotypes in the TgHD minipigs will require more study.


Assuntos
Animais Geneticamente Modificados , Modelos Animais de Doenças , Doença de Huntington , Proteínas do Tecido Nervoso/genética , Animais , Western Blotting , Feminino , Vetores Genéticos , Proteína Huntingtina , Hibridização In Situ , Lentivirus , Masculino , Reação em Cadeia da Polimerase , Suínos , Porco Miniatura , Transdução Genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...