Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Photonics ; 10(11): 3805-3820, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38027250

RESUMO

The engineering of the spatial and temporal properties of both the electric permittivity and the refractive index of materials is at the core of photonics. When vanishing to zero, those two variables provide efficient knobs to control light-matter interactions. This Perspective aims at providing an overview of the state of the art and the challenges in emerging research areas where the use of near-zero refractive index and hyperbolic metamaterials is pivotal, in particular, light and thermal emission, nonlinear optics, sensing applications, and time-varying photonics.

2.
Nat Commun ; 14(1): 3875, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414750

RESUMO

Molecular polaritons are hybrid light-matter states that emerge when a molecular transition strongly interacts with photons in a resonator. At optical frequencies, this interaction unlocks a way to explore and control new chemical phenomena at the nanoscale. Achieving such control at ultrafast timescales, however, is an outstanding challenge, as it requires a deep understanding of the dynamics of the collectively coupled molecular excitation and the light modes. Here, we investigate the dynamics of collective polariton states, realized by coupling molecular photoswitches to optically anisotropic plasmonic nanoantennas. Pump-probe experiments reveal an ultrafast collapse of polaritons to pure molecular transition triggered by femtosecond-pulse excitation at room temperature. Through a synergistic combination of experiments and quantum mechanical modelling, we show that the response of the system is governed by intramolecular dynamics, occurring one order of magnitude faster with respect to the uncoupled excited molecule relaxation to the ground state.


Assuntos
Fótons , Registros , Anisotropia , Frequência Cardíaca
3.
ACS Photonics ; 9(8): 2683-2690, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35996365

RESUMO

Inorganic van der Waals bonded semiconductors such as transition metal dichalcogenides are the subject of intense research due to their electronic and optical properties which are promising for next-generation optoelectronic devices. In this context, understanding the carrier dynamics, as well as charge and energy transfer at the interface between metallic contacts and semiconductors, is crucial and yet quite unexplored. Here, we present an experimental study to measure the effect of mutual interaction between thermionically injected and directly excited carriers on the exciton formation dynamics in bulk WS2. By employing a pump-push-probe scheme, where a pump pulse induces thermionic injection of electrons from a gold substrate into the conduction band of the semiconductor, and another delayed push pulse that excites direct transitions in the WS2, we can isolate the two processes experimentally and thus correlate the mutual interaction with its effect on the ultrafast dynamics in WS2. The fast decay time constants extracted from the experiments show a decrease with an increasing ratio between the injected and directly excited charge carriers, thus disclosing the impact of thermionic electron injection on the exciton formation dynamics. Our findings might offer a new vibrant direction for the integration of photonics and electronics, especially in active and photodetection devices, and, more in general, in upcoming all-optical nanotechnologies.

5.
Phys Rev Lett ; 127(21): 217402, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860084

RESUMO

Active nanophotonics can be realized by controlling the optical properties of materials with external magnetic fields. Here, we explore the influence of optical anisotropy on the magneto-optical activity in nonmagnetic hyperbolic nanoparticles. We demonstrate that the magneto-optical response is driven by the hyperbolic dispersion via the coupling of metallic-induced electric and dielectric-induced magnetic dipolar optical modes with static magnetic fields. Magnetic circular dichroism experiments confirm the theoretical predictions and reveal tunable magneto-optical activity across the visible and near infrared spectral range.

6.
Nanomaterials (Basel) ; 11(5)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069339

RESUMO

The phenomenon of coupling between light and surface plasmon polaritons requires specific momentum matching conditions. In the case of a single scattering object on a metallic surface, such as a nanoparticle or a nanohole, the coupling between a broadband effect, i.e., scattering, and a discrete one, such as surface plasmon excitation, leads to Fano-like resonance lineshapes. The necessary phase matching requirements can be used to engineer the light-plasmon coupling and to achieve a directional plasmonic excitation. Here, we investigate this effect by using a chiral nanotip to excite surface plasmons with a strong spin-dependent azimuthal variation. This effect can be described by a Fano-like interference with a complex coupling factor that can be modified thanks to a symmetry breaking of the nanostructure.

7.
Nanoscale Adv ; 3(3): 633-642, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36133836

RESUMO

Plasmonic nanocavities are able to engineer and confine electromagnetic fields to subwavelength volumes. In the past decade, they have enabled a large set of applications, in particular for sensing, optical trapping, and the investigation of physical and chemical phenomena at a few or single-molecule levels. This extreme sensitivity is possible thanks to the highly confined local field intensity enhancement, which depends on the geometry of plasmonic nanocavities. Indeed, suitably designed structures providing engineered local optical fields lead to enhanced optical sensing based on different phenomena such as surface enhanced Raman scattering, fluorescence, and Förster resonance energy transfer. In this mini-review, we illustrate the most recent results on plasmonic nanocavities, with specific emphasis on the detection of single molecules.

8.
Nano Lett ; 20(8): 5593-5596, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787183

RESUMO

Surface plasmons are collective oscillations of free electrons at the interface between a conducting material and the dielectric environment. These excitations support the formation of strongly enhanced and confined electromagnetic fields. As well, they display fast dynamics lasting tens of femtoseconds and can lead to a strong nonlinear optical response at the nanoscale. Thus, they represent the perfect tool to drive and control fast optical processes, such as ultrafast optical switching, single photon emission, as well as strong coupling interactions to explore and tailor photochemical reactions. In this Virtual Issue, we gather several important papers published in Nano Letters in the past decade reporting studies on the ultrafast dynamics of surface plasmons.

9.
Nanoscale ; 12(15): 8574-8581, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32248206

RESUMO

In this work, we present a plasmonic platform capable of trapping nano-objects in two different spatial configurations. The switch between the two trapping states, localized on the tip and on the outer wall of a vertical gold nanochannel, can be activated by varying the focusing position of the excitation laser along the main axis of the nanotube. We show that the switching of the trapping site is induced by changes in the distribution of the electromagnetic field and of the trapping force. The "inner" and "outer" trapping states are characterized by a static and a dynamic behavior respectively, and their stiffness is measured by analyzing the positions of the trapped specimens as a function of time. In addition, we demonstrate that the stiffness of the static state is high enough to trap particles with diameter as small as 40 nm. These results show a simple, controllable way to generate a switchable two-state trapping regime, which could be used as a model for the study of dynamic trapping or as a mechanism for the development of nanofluidic devices.

10.
Light Sci Appl ; 9: 49, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257180

RESUMO

Enhancing magneto-optical effects is crucial for reducing the size of key photonic devices based on the non-reciprocal propagation of light and to enable active nanophotonics. Here, we disclose a currently unexplored approach that exploits hybridization with multipolar dark modes in specially designed magnetoplasmonic nanocavities to achieve a large enhancement of the magneto-optically induced modulation of light polarization. The broken geometrical symmetry of the design enables coupling with free-space light and hybridization of the multipolar dark modes of a plasmonic ring nanoresonator with the dipolar localized plasmon resonance of the ferromagnetic disk placed inside the ring. This hybridization results in a low-radiant multipolar Fano resonance that drives a strongly enhanced magneto-optically induced localized plasmon. The large amplification of the magneto-optical response of the nanocavity is the result of the large magneto-optically induced change in light polarization produced by the strongly enhanced radiant magneto-optical dipole, which is achieved by avoiding the simultaneous enhancement of re-emitted light with incident polarization by the multipolar Fano resonance. The partial compensation of the magneto-optically induced polarization change caused by the large re-emission of light with the original polarization is a critical limitation of the magnetoplasmonic designs explored thus far and that is overcome by the approach proposed here.

11.
Artigo em Inglês | MEDLINE | ID: mdl-32133349

RESUMO

High quality attenuated intracellular action potentials from large cell networks can be recorded on multi-electrode arrays by means of 3D vertical nanopillars using electrical pulses. However, most of the techniques require complex 3D nanostructures that prevent the straightforward translation into marketable products and the wide adoption in the scientific community. Moreover, 3D nanostructures are often delicate objects that cannot sustain several harsh use/cleaning cycles. On the contrary, laser optoacoustic poration allows the recording of action potentials on planar nanoporous electrodes made of noble metals. However, these constraints of the electrode material and morphology may also hinder the full exploitation of this methodology. Here, we show that optoacoustic poration is also very effective for porating cells on a large family of MEA electrode configurations, including robust electrodes made of nanoporous titanium nitride or disordered fractal-like gold nanostructures. This enables the recording of high quality cardiac action potentials in combination with optoacoustic poration, providing thus attenuated intracellular recordings on various already commercial devices used by a significant part of the research and industrial communities.

12.
Opt Lett ; 45(4): 823-826, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32058479

RESUMO

Recent advances in nanotechnology have prompted the need for tools to accurately and noninvasively manipulate individual nano-objects. Among the possible strategies, optical forces have been widely used to enable nano-optical tweezers capable of trapping or moving a specimen with unprecedented accuracy. Here, we propose an architecture consisting of a nanotip excited with a plasmonic vortex enabling effective dynamic control of nanoparticles in three dimensions. The structure illuminated by a beam with angular momentum can generate an optical field that can be used to manipulate single dielectric nanoparticles. We demonstrate that it is possible to stably trap or push the particle from specific points, thus enabling a new, to the best of our knowledge, platform for nanoparticle manipulation.

13.
Nano Lett ; 20(1): 2-10, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31804080

RESUMO

Recent advances in machine learning (ML) offer new tools to extract new insights from large data sets and to acquire small data sets more effectively. Researchers in nanoscience are experimenting with these tools to tackle challenges in many fields. In addition to ML's advancement of nanoscience, nanoscience provides the foundation for neuromorphic computing hardware to expand the implementation of ML algorithms. In this Mini Review, we highlight some recent efforts to connect the ML and nanoscience communities by focusing on three types of interaction: (1) using ML to analyze and extract new insights from large nanoscience data sets, (2) applying ML to accelerate material discovery, including the use of active learning to guide experimental design, and (3) the nanoscience of memristive devices to realize hardware tailored for ML. We conclude with a discussion of challenges and opportunities for future interactions between nanoscience and ML researchers.

14.
Nano Lett ; 19(11): 7553-7562, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31587559

RESUMO

Solid-state nanopore-based sensors are promising platforms for next-generation sequencing technologies, featuring label-free single-molecule sensitivity, rapid detection, and low-cost manufacturing. In recent years, solid-state nanopores have been explored due to their miscellaneous fabrication methods and their use in a wide range of sensing applications. Here, we highlight a novel family of solid-state nanopores which have recently appeared, namely plasmonic nanopores. The use of plasmonic nanopores to engineer electromagnetic fields around a nanopore sensor allows for enhanced optical spectroscopies, local control over temperature, thermophoresis of molecules and ions to/from the sensor, and trapping of entities. This Mini Review offers a comprehensive understanding of the current state-of-the-art plasmonic nanopores for single-molecule detection and biomolecular sequencing applications and discusses the latest advances and future perspectives on plasmonic nanopore-based technologies.


Assuntos
Nanoporos , Análise de Sequência de DNA/métodos , Imagem Individual de Molécula/métodos , Ressonância de Plasmônio de Superfície/métodos , Animais , Campos Eletromagnéticos , Desenho de Equipamento , Humanos , Modelos Moleculares , Nanoporos/ultraestrutura , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Análise de Sequência de DNA/instrumentação , Imagem Individual de Molécula/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação
15.
Materials (Basel) ; 12(20)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658603

RESUMO

Here we optimized the electrophoretic deposition process for the fabrication of WS2 plasmonic nanohole integrated structures. We showed how the conditions used for site-selective deposition influenced the properties of the deposited flakes. In particular, we investigated the effect of different suspension buffers used during the deposition both in the efficiency of the process and in the stability of WS2 flakes, which were deposited on an ordered arrays of plasmonic nanostructures. We observed that a proper buffer can significantly facilitate the deposition process, keeping the material stable with respect to oxidation and contamination. Moreover, the integrated plasmonic structures that can be prepared with this process can be applied to enhanced spectroscopies and for the preparation of 2D nanopores.

16.
ACS Omega ; 4(5): 9294-9300, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460018

RESUMO

Here, we propose an easy method for site-selective deposition of two-dimensional (2D) material flakes onto nanoholes by means of electrophoretic deposition. This method can be applied to both simple flat nanostructures and complex three-dimensional structures incorporating nanoholes. The deposition method is here used for the decoration of large ordered arrays of plasmonic structures with either a single or few layers of MoS2. In principle, the plasmonic field generated by the nanohole can significantly interact with the 2D layer leading to enhanced light-material interaction. This makes our platform an ideal system for hybrid 2D material/plasmonic investigations. The engineered deposition of 2D materials on plasmonic nanostructures is useful for several important applications such as enhanced light emission, strong coupling, hot-electron generation, and 2D material sensors.

17.
Sci Rep ; 9(1): 9907, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289276

RESUMO

We present a systematic study on the optical and magneto-optical properties of Ni/SiO2/Au dimer lattices. By considering the excitation of orthogonal dipoles in the Ni and Au nanodisks, we analytically demonstrate that the magnetoplasmonic response of dimer lattices is governed by a complex interplay of near- and far-field interactions. Near-field coupling between dipoles in Ni and low-loss Au enhances the polarizabilty of single dimers compared to that of isolated Ni nanodisks. Far-field diffractive coupling in periodic lattices of these two particle types enlarges the difference in effective polarizability further. This effect is explained by an inverse relationship between the damping of collective surface lattice resonances and the imaginary polarizability of individual scatterers. Optical reflectance measurements, magneto-optical Kerr effect spectra, and finite-difference time-domain simulations confirm the analytical results. Hybrid dimer arrays supporting intense plasmon excitations are a promising candidate for active magnetoplasmonic devices.

18.
Chem Commun (Camb) ; 55(65): 9725-9728, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31355377

RESUMO

We fabricated hybrid metal-dielectric nanoslots and measured their optical response at three different wavelengths. The nanostructure is fabricated on a bilayer film formed by the sequential deposition of silicon and gold on a transparent substrate. The optical characterization is done via fluorescence spectroscopy measurements. We characterized the fluorescence enhancement, as well as the lifetime and the detection volume reduction for each wavelength. We observe that the hybrid metal-dielectric nanoslots behave as enhanced zero mode waveguides in the near-infrared spectral region. Their detection volume is such that they can perform enhanced single-molecule detection at tens of µM. We compared their behavior with that of a golden ZMW, and we demonstrated that the dielectric silicon layer improves both the optical performance and the stability of the device.

19.
Nano Lett ; 19(3): 1851-1859, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30776244

RESUMO

We introduce a novel concept of hybrid metal-dielectric meta-antenna supporting type II hyperbolic dispersion, which enables full control of absorption and scattering of light in the visible/near-infrared spectral range. This ability lies in the different nature of the localized hyperbolic Bloch-like modes excited within the meta-antenna. The experimental evidence is corroborated by a comprehensive theoretical study. In particular, we demonstrate that two main modes, one radiative and one non-radiative, can be excited by direct coupling with the free-space radiation. We show that the scattering is the dominating electromagnetic decay channel, when an electric dipolar mode is induced in the system, whereas a strong absorption process occurs when a magnetic dipole is excited. Also, by varying the geometry of the system, the relative ratio of scattering and absorption, as well as their relative enhancement and/or quenching, can be tuned at will over a broad spectral range, thus enabling full control of the two channels. Importantly, both radiative and nonradiative modes supported by our architecture can be excited directly with far-field radiation. This is observed to occur even when the radiative channels (scattering) are almost totally suppressed, thereby making the proposed architecture suitable for practical applications. Finally, the hyperbolic meta-antennas possess both angular and polarization independent structural integrity, unlocking promising applications as hybrid meta-surfaces or as solvable nanostructures.

20.
Nano Lett ; 19(2): 722-731, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30673248

RESUMO

Delivery of molecules into intracellular compartments is one of the fundamental requirements in molecular biology. However, the possibility of delivering a precise number of nano-objects with single-particle resolution is still an open challenge. Here we present an electrophoretic platform based on 3D hollow nanoelectrodes to enable delivery of single nanoparticles into single selected cells and monitoring of the single-particle delivery by surface-enhanced Raman scattering (SERS). The gold-coated hollow nanoelectrode capable of confinement and enhancement of electromagnetic fields upon laser illumination can distinguish the SERS signals of a single nanoparticle flowing through the nanoelectrode. Tight wrapping of cell membranes around the nanoelectrodes allows effective membrane electroporation such that single gold nanorods are delivered on demand into a living cell by electrophoresis. The capability of the 3D hollow nanoelectrodes to porate cells and reveal single emitters from the background in continuous flow is promising for the analysis of both intracellular delivery and sampling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...