Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38800950

RESUMO

Objective: Cannabis sativa is the most used recreational drug worldwide. In recent years, there has been a growing interest in the potential therapeutic benefits of medicinal cannabis to treat a variety of psychiatric and neurological conditions. In particular, cannabidiol (CBD), a nonpsychoactive cannabis constituent, has been investigated for its potential prosocial effects on behavior, although the molecular mechanisms underlying this effect are still largely unknown. The aim of this study was to investigate the effect of a C. sativa oil CBD rich (CS oil) on social interaction and ultrasonic communication in mice. Study Design: Twenty-seven adult male mice (B6; 129P F2) were treated daily with vehicle or CS oil for 2 weeks. At Day 14, mice were tested for behavior (social interaction test and ultrasonic communication). Forty minutes before the behavioral tests, mice were exposed to intranasal treatment with vehicle or the oxytocin receptor antagonist, L-371,257. After behavioral tests, VH- and CS oil-treated mice were sacrificed, RNA was extracted from the hypothalamus and used for quantitative Real Time-PCR experiments. Results: We found that a 2-week treatment with the CS oil on mice exerted a prosocial effect associated with an increase in ultrasonic vocalizations. These effects were inhibited by pretreating mice with an oxytocin receptor antagonist. In addition, at the molecular level, we found that CS oil treatment caused a significant increase in oxytocin and a decrease in oxytocin receptor expression levels in the brain hypothalamus. Conclusion: Our results suggest that CS oil promotes social behavior by acting on oxytocin pathway.

2.
Eur J Neurosci ; 57(12): 1954-1965, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36382587

RESUMO

The growing interest on the therapeutic potential against neurodegeneration of Cannabis sativa extracts, and of phytocannabinoids in particular, is paralleled by a limited understanding of the undergoing biochemical pathways in which these natural compounds may be involved. Computational tools are nowadays commonly enrolled in the drug discovery workflow and can guide the investigation of macromolecular targets for such molecules. In this contribution, in silico techniques have been applied to the study of C. sativa constituents at various extents, and a total of seven phytocannabinoids and four terpenes were considered. On the side of ligand-based virtual screening, physico-chemical descriptors were computed and evaluated, highlighting the phytocannabinoids possessing suitable drug-like properties to potentially target the central nervous system. Our previous findings and literature data prompted us to investigate the interaction of these molecules with phosphodiesterases (PDEs), a family of enzymes being studied for the development of therapeutic agents against neurodegeneration. Among the compounds, structure-based techniques such as docking and molecular dynamics (MD), highlighted cannabidiol (CBD) as a potential and selective PDE9 ligand, since a promising calculated binding energy value (-9.1 kcal/mol) and a stable interaction in the MD simulation timeframe were predicted. Additionally, PDE9 inhibition assay confirmed the computational results, and showed that CBD inhibits the enzyme in the nanomolar range in vitro, paving the way for further development of this phytocannabinoid as a therapeutic option against neurodegeneration.


Assuntos
Canabidiol , Canabidiol/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Ligantes , Terpenos , Diester Fosfórico Hidrolases
3.
J Neurosci Res ; 100(3): 780-797, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35043490

RESUMO

Autism spectrum disorders (ASDs) are a group of clinically heterogeneous neurodevelopmental disorders sharing common features related to impaired social and communication abilities in addition to stereotyped behaviors. ASD patients present encephalic morphological, physiological, and biomolecular alterations with low levels of melatonin due to alterations in its pathways. Therefore, even if ASDs have traditionally been framed as behavioral disorders, several lines of evidence are accumulating that ASDs are characterized by certain anatomical and physiological abnormalities, including oxidative stress and inflammation in peripheral biomarkers, but likewise present in human brain tissue also characterized by alterations in synaptic remodeling and neuromodulation. Melatonin has also protective and antioxidant properties, so we can therefore hypothesize that alterations in melatonin's pathways may be one of the causes of the symptomatology of autism. The aim of the present study was to analyze the beneficial effect induced by melatonin administration and its possible mechanism of action in a transgenic mouse model of autism, immediately after weaning. The male mice were daily treated per os with melatonin (10 mg/Kg/day) or vehicle for 8 weeks starting from the sixth week of life. The antioxidant modulation, the GABAergic/glutamatergic impairment, and the synaptic remodeling in the prefrontal cortex have been evaluated. Social and repetitive behaviors were also evaluated. The behavioral results showed no statistical evidences, instead the immunohistochemical results indicated the ability of melatonin to promote the activity of antioxidant system, the GABAergic/glutamatergic equilibrium, and the synaptic remodeling. The results show that melatonin may be a possible adjuvant therapeutic strategy in ASDs.


Assuntos
Transtorno do Espectro Autista , Melatonina , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Encéfalo , Humanos , Masculino , Melatonina/farmacologia , Melatonina/uso terapêutico , Camundongos , Camundongos Transgênicos , Córtex Pré-Frontal
4.
Cannabis Cannabinoid Res ; 7(2): 170-178, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34370607

RESUMO

Introduction:Cannabis sativa L. (C. sativa) is used since ancient times to produce fabrics, baskets, and cords. Later, different ethnic groups used to burn the leaves and flowers of psychotropic cultivars with high Δ9-tetrahydrocannabinol (D9-THC) levels, during the religious or propitiatory rites to alter the state of consciousness. To date, it is not known whether also nonpsychotropic cultivars of C. sativa were used during these rites, and whether these varieties could have an effect on human behavior. This study aimed to evaluate the behavioral effects of an extract of nonpsychotropic C. sativa (NP-CS) in mice. Materials and Methods: An extract of a nonpsychotropic cultivar of C. sativa dissolved in medium-chain triglyceride oil was used and the different phytochemical components were evaluated. The relative composition in terms of phytocannabinoid content was assessed by reverse phase high-performance liquid chromatography coupled to UV detection (RP-HPLC-UV), and the volatile components were analyzed by gas chromatography-mass spectrometry (GC-MS). In addition, the behavioral effect of NP-CS was assessed on a wild-type mouse model. The animals were treated for 14 days (oral gavage) and motility, anxiety, and social effects were assessed. Results: RP-HPLC-UV analysis demonstrated that D9-THC was present in lower concentration with respect to other cannabinoids, like cannabidiol. Furthermore, the GC-MS analysis revealed the presence of several terpenoids. Concerning in vivo studies, chronic treatment with NP-CS did not alter body weight, motility, and anxiety and increased social interaction. Conclusions: This study highlighted the prosocial effects of NP-CS.


Assuntos
Canabidiol , Canabinoides , Cannabis , Animais , Canabidiol/química , Canabinoides/farmacologia , Cannabis/química , Dronabinol/química , Camundongos , Extratos Vegetais/farmacologia
5.
Biomolecules ; 11(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34356599

RESUMO

Artemisia annua L. (AA) has shown for many centuries important therapeutic virtues associated with the presence of artemisinin (ART). The aim of this study was to identify and quantify ART and other secondary metabolites in ethanolic extracts of AA and evaluate the biological activity in the presence of an inflammatory stimulus. In this work, after the extraction of the aerial parts of AA with different concentrations of ethanol, ART was quantified by HPLC and HPLC-MS. In addition, anthocyanins, flavanols, flavanones, flavonols, lignans, low-molecular-weight phenolics, phenolic acids, stilbenes, and terpenes were identified and semi-quantitatively determined by UHPLC-QTOF-MS untargeted metabolomics. Finally, the viability of human neuroblastoma cells (SH-SY5Y) was evaluated in the presence of the different ethanolic extracts and in the presence of lipopolysaccharide (LPS). The results show that ART is more concentrated in AA samples extracted with 90% ethanol. Regarding the other metabolites, only the anthocyanins are more concentrated in the samples extracted with 90% ethanol. Finally, ART and all AA samples showed a protective action towards the pro-inflammatory stimulus of LPS. In particular, the anti-inflammatory effect of the leaf extract of AA with 90% ethanol was also confirmed at the molecular level since a reduction in TNF-α mRNA gene expression was observed in SH-SY5Y treated with LPS.


Assuntos
Anti-Inflamatórios , Artemisia annua/química , Etanol/química , Compostos Fitoquímicos , Extratos Vegetais/química , Folhas de Planta/química , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Linhagem Celular Tumoral , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia
6.
Molecules ; 26(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499104

RESUMO

Gynostemma pentaphyllum (var. Ginpent) (GP) is a variety of Cucurbit with anti-inflammatory and antioxidant effects in patients. In this manuscript, the main components present in the dry extract of GP have been identified using Ultra High Performance Liquid Chromatography quadrupole-time-of-flight mass spectrometry (UHPLC/Q-TOF-MS). In addition, the anti-inflammatory action of GP was evaluated in animal models with acute peripheral inflammation and motor alteration induced by lipopolysaccharide. The results showed that GP dry extract is rich in secondary metabolites with potential antioxidant and anti-inflammatory properties. We found that the treatment with GP induced a recovery of motor function measured with the rotarod test and pole test, and a reduction in inflammatory cytokines such as interleukin-1ß and interleukin-6 measured with the ELISA test. The data collected in this study on the effects of GP in in vivo models may help integrate the therapeutic strategies of inflammatory-based disorders.


Assuntos
Gynostemma/química , Inflamação/prevenção & controle , Atividade Motora/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Citocinas/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Fitosteróis/análise , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/análise , Saponinas/análise
7.
Brain Sci ; 10(9)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906830

RESUMO

Aberrant immune activity during neurodevelopment could participate in the generation of neurological dysfunctions characteristic of several neurodevelopmental disorders (NDDs). Numerous epidemiological studies have shown a link between maternal infections and NDDs risk; animal models of maternal immune activation (MIA) have confirmed this association. Activation of maternal immune system during pregnancy induces behavioral and functional alterations in offspring but the biological mechanisms at the basis of these effects are still poorly understood. In this study, we investigated the effects of prenatal lipopolysaccharide (LPS) exposure in peripheral and central inflammation, cortical cytoarchitecture and behavior of offspring (LPS-mice). LPS-mice reported a significant increase in interleukin-1ß (IL-1ß) serum level, glial fibrillary acidic protein (GFAP)- and ionized calcium-binding adapter molecule 1 (Iba1)-positive cells in the cortex. Furthermore, cytoarchitecture analysis in specific brain areas, showed aberrant alterations in minicolumns' organization in LPS-mice adult brain. In addition, we demonstrated that LPS-mice presented behavioral alterations throughout life. In order to better understand biological mechanisms whereby LPS induced these alterations, dams were treated with meloxicam. We demonstrated for the first time that exposure to LPS throughout pregnancy induces structural permanent alterations in offspring brain. LPS-mice also present severe behavioral impairments. Preventive treatment with meloxicam reduced inflammation in offspring but did not rescue them from structural and behavioral alterations.

8.
Sci Rep ; 9(1): 15912, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685905

RESUMO

Mice emit ultrasonic vocalizations (USVs) in different social conditions: pups maternal separation, juveniles play, adults mating and social investigation. The USVs measurement has become an important instrument for behavioural phenotyping in neurodevelopmental disorders (NDDs). Recently, we have demonstrated that the deletion of the NFκB1 gene, which encodes the p50 NF-κB subunit, causes NDDs phenotype in mice. In this study, we investigated the ultrasonic communication and the effects of an early social enrichment in mice lacking the NF-κB p50 subunit (p50 KO). In particular, USVs of wild-type (WT), p50 KO and KO exposed to early social enrichment (KO enriched) were recorded using an ultrasound sensitive microphone and analysed by Avisoft software. USVs analysis showed that p50 KO pups emit more and longer vocalizations compared to WT pups. On the contrary, in adulthood, p50 KO mice emit less USVs than WT mice. We also found significant qualitative differences in p50 KO mice USVs compared to WT mice; the changes specifically involved two USVs categories. Early social enrichment had no effect on USVs number, duration and type in p50 KO mice. Together, these data revealed social communication alterations in a mouse model of NDDs; these deficits were not recovered by early social enrichment, strengthening the fact that genetic background prevails on environmental enrichment.


Assuntos
Transtornos do Neurodesenvolvimento/patologia , Vocalização Animal , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Knockout , Subunidade p50 de NF-kappa B/deficiência , Subunidade p50 de NF-kappa B/genética , Transtornos do Neurodesenvolvimento/metabolismo , Fenótipo
9.
Molecules ; 24(8)2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30999685

RESUMO

Zeolites are porous minerals with high absorbency and ion-exchange capacity. Their molecular structure is a dense network of AlO4 and SiO4 that generates cavities where water and other polar molecules or ions are inserted/exchanged. Even though there are several synthetic or natural occurring species of zeolites, the most widespread and studied is the naturally occurring zeolite clinoptilolite (ZC). ZC is an excellent detoxifying, antioxidant and anti-inflammatory agent. As a result, it is been used in many industrial applications ranging from environmental remediation to oral applications/supplementation in vivo in humans as food supplements or medical devices. Moreover, the modification as micronization of ZC (M-ZC) or tribomechanically activated zeolite clinoptilolite (TMAZ) or furthermore as double tribomechanically activated zeolite clinoptilolite (PMA-ZC) allows improving its benefits in preclinical and clinical models. Despite its extensive use, many underlying action mechanisms of ZC in its natural or modified forms are still unclear, especially in humans. The main aim of this review is to shed light on the geochemical aspects and therapeutic potentials of ZC with a vision of endorsing further preclinical and clinical research on zeolites, in specific on the ZC and its modified forms as a potential agent for promoting human brain health and overall well-being.


Assuntos
Suplementos Nutricionais , Zeolitas , Humanos , Zeolitas/química , Zeolitas/farmacocinética , Zeolitas/uso terapêutico
10.
Nutrients ; 11(4)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934852

RESUMO

BACKGROUND: Rice (Oryza sativa L.) is the main food source for more than half of humankind. Rice is rich in phytochemicals and antioxidants with several biological activities; among these compounds, the presence of γ-oryzanol is noteworthy. The present study aims to explore the effects of γ-oryzanol on cognitive performance in a mouse model of neuroinflammation and cognitive alterations. METHODS: Mice received 100 mg/kg γ-oryzanol (ORY) or vehicle once daily for 21 consecutive days and were then exposed to an inflammatory stimulus elicited by lipopolysaccharide (LPS). A novel object recognition test and mRNA expression of antioxidant and neuroinflammatory markers in the hippocampus were evaluated. RESULTS: ORY treatment was able to improve cognitive performance during the neuroinflammatory response. Furthermore, phase II antioxidant enzymes such as heme oxygenase-1 (HO-1) and NADPH-dehydrogenase-quinone-1 (NQO1) were upregulated in the hippocampi of ORY and ORY+LPS mice. Lastly, γ-oryzanol showed a strong anti-inflammatory action by downregulating inflammatory genes after LPS treatment. CONCLUSION: These results suggest that chronic consumption of γ-oryzanol can revert the LPS-induced cognitive and memory impairments by promoting hippocampal antioxidant and anti-inflammatory molecular responses.


Assuntos
Encefalite/induzido quimicamente , Lipopolissacarídeos/toxicidade , Fenilpropionatos/farmacologia , Animais , Antioxidantes/metabolismo , Disfunção Cognitiva , Encefalite/prevenção & controle , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Oryza , Regulação para Cima
11.
Nutrients ; 11(4)2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-30935111

RESUMO

Rice (Oryza sativa L.) is the richest source of γ-oryzanol, a compound endowed with antioxidant and anti-inflammatory properties. γ-Oryzanol has been demonstrated to cross the blood-brain barrier in intact form and exert beneficial effects on brain function. This study aimed to clarify the effects of γ-oryzanol in the hippocampus in terms of cognitive function and protein expression. Adult mice were administered with γ-oryzanol 100 mg/kg or vehicle (control) once a day for 21 consecutive days following which cognitive behavior and hippocampal proteome were investigated. Cognitive tests using novel object recognition and Y-maze showed that long-term consumption of γ-oryzanol improves cognitive function in mice. To investigate the hippocampal proteome modulated by γ-oryzanol, 2D-difference gel electrophoresis (2D-DIGE) was performed. Interestingly, we found that γ-oryzanol modulates quantitative changes of proteins involved in synaptic plasticity and neuronal trafficking, neuroprotection and antioxidant activity, and mitochondria and energy metabolism. These findings suggested γ-oryzanol as a natural compound able to maintain and reinforce brain function. Although more intensive studies are needed, we propose γ-oryzanol as a putative dietary phytochemical for preserving brain reserve, the ability to tolerate age-related changes, thereby preventing clinical symptoms or signs of neurodegenerative diseases.


Assuntos
Cognição/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Oryza/química , Fenilpropionatos/farmacologia , Animais , Biomarcadores , Peso Corporal/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Fenilpropionatos/química , Proteoma
12.
Planta ; 249(6): 1681-1694, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30877436

RESUMO

MAIN CONCLUSION: Phytochemicals and secondary metabolites able to interact with the endocannabinoid system (Cannabimimetics) have been recently described in a broad range of plants and fruits. These findings can open new alternative avenues to explore for the development of novel therapeutic compounds. The cannabinoids regulate many physiological and pathological functions in both animals and plants. Cannabis sativa is the main plant that produces phytocannabinoids inside resins capable to defend the plant from the aggression of parasites and herbivores. Animals produce anandamide and 2-arachidonoyl glycerol, which thanks to binding with main receptors such as type-1 cannabinoid receptor (CB1R) and the type-2 cannabinoid receptor (CB2R) are involved in inflammation processes and several brain functions. Endogenous cannabinoids, enzymes for synthesis and degradation of cannabinoids, and CB1R and CB2R constitute the endocannabinoid system (ECS). Other plants can produce cannabinoid-like molecules such as perrottetinene extracted from Radula perrottetii, or anandamide and 2-arachidonoyl glycerol extracted from some bryophytes. Moreover, several other secondary metabolites can also interact with the ECS of animals and take the name of cannabimimetics. These phytoextracts not derived from Cannabis sativa can act as receptor agonists or antagonist, or enzyme inhibitors of ECS and can be involved in the inflammation, oxidative stress, cancer, and neuroprotection. Finally, given the evolutionary heterogeneity of the cannabimimetic plants, some authors speculated on the fascinating thesis of the evolutionary convergence between plants and animals regarding biological functions of ECS. The review aims to provide a critical and complete assessment of the botanical, chemical and therapeutic aspects of cannabimimetic plants to evaluate their spread in the world and medicinal potentiality.


Assuntos
Moduladores de Receptores de Canabinoides/farmacologia , Endocanabinoides/farmacologia , Compostos Fitoquímicos/farmacologia , Plantas/química , Animais , Ácidos Araquidônicos/química , Ácidos Araquidônicos/farmacologia , Evolução Biológica , Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/farmacologia , Moduladores de Receptores de Canabinoides/química , Canabinoides/química , Canabinoides/farmacologia , Cannabis/química , Cannabis/genética , Cannabis/metabolismo , Dronabinol/análogos & derivados , Dronabinol/química , Dronabinol/farmacologia , Endocanabinoides/química , Frutas/química , Frutas/genética , Frutas/metabolismo , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico , Plantas/genética , Plantas/metabolismo , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/farmacologia , Receptores de Canabinoides/metabolismo
13.
Life Sci ; 224: 120-127, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30910646

RESUMO

The pharmacological research on the Cannabis sativa-derived compounds has never terminated. Among the phytocannabinoids without psychotropic effects, the prevalent one in Cannabis is cannabidiol (CBD). Although CBD was initially considered a type 2 cannabinoid receptor (CB2R) antagonist, it did not show a good cannabinoidergic activity. Furthermore, heterogeneous results were obtained in experimental animal models of anxiety disorders, psychotic stages and neurodegenerative diseases. Recently, CBD has been authorized by the FDA to treat some rare forms of epilepsy and many trials have begun for the treatment of autism spectrum disorders. This review aims to clarify the pharmacological activity of CBD and its multiple therapeutic applications. Furthermore, critical and conflicting results of the research on CBD are discussed with a focus on promising future prospects.


Assuntos
Canabidiol/uso terapêutico , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/psicologia , Animais , Humanos , Neuropsiquiatria
14.
J Ethnopharmacol ; 227: 300-315, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30205181

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cannabis sativa L. (C. sativa) is an annual dioecious plant, which shares its origins with the inception of the first agricultural human societies in Asia. Over the course of time different parts of the plant have been utilized for therapeutic and recreational purposes, for instance, extraction of healing oils from seed, or the use of inflorescences for their psychoactive effects. The key psychoactive constituent in C. sativa is called Δ-9-tetrahydrocannabinol (D9-THC). The endocannabinoid system seems to be phylogenetically ancient, as it was present in the most primitive vertebrates with a neuronal network. N-arachidonoylethanolamine (AEA) and 2-arachidonoyl glycerol (2-AG) are the main endocannabinoids ligands present in the animal kingdom, and the main endocannabinoid receptors are cannabinoid type-1 (CB1) receptor and cannabinoid type-2 (CB2) receptor. AIM OF THE STUDY: The review aims to provide a critical and comprehensive evaluation, from the ancient times to our days, of the ethnological, botanical, chemical and pharmacological aspects of C. sativa, with a vision for promoting further pharmaceutical research to explore its complete potential as a therapeutic agent. MATERIALS AND METHODS: This study was performed by reviewing in extensive details the studies on historical significance and ethnopharmacological applications of C. sativa by using international scientific databases, books, Master's and Ph.D. dissertations and government reports. In addition, we also try to gather relevant information from large regional as well as global unpublished resources. In addition, the plant taxonomy was validated using certified databases such as Medicinal Plant Names Services (MPNS) and The Plant List. RESULTS AND CONCLUSIONS: A detailed comparative analysis of the available resources for C. sativa confirmed its origin and traditional spiritual, household and therapeutic uses and most importantly its popularity as a recreational drug. The result of several studies suggested a deeper involvement of phytocannabinoids (the key compounds in C. sativa) in several others central and peripheral pathophysiological mechanisms such as food intake, inflammation, pain, colitis, sleep disorders, neurological and psychiatric illness. However, despite their numerous medicinal benefits, they are still considered as a menace to the society and banned throughout the world, except for few countries. We believe that this review will help lay the foundation for promoting exhaustive pharmacological and pharmaceutical studies in order to better understand the clinical relevance and applications of non-psychoactive cannabinoids in the prevention and treatment of life-threatening diseases and help to improve the legal status of C. sativa.


Assuntos
Cannabis , Animais , Etnofarmacologia/história , História do Século XV , História do Século XVIII , História do Século XIX , História do Século XX , História Antiga , História Medieval , Humanos , Compostos Fitoquímicos/farmacologia , Plantas Medicinais , Terpenos/farmacologia
15.
Horm Mol Biol Clin Investig ; 36(2)2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29601300

RESUMO

The use of different natural and/or synthetic preparations of Cannabis sativa is associated with therapeutic strategies for many diseases. Indeed, thanks to the widespread diffusion of the cannabinoidergic system in the brain and in the peripheral districts, its stimulation, or inhibition, regulates many pathophysiological phenomena. In particular, central activation of the cannabinoidergic system modulates the limbic and mesolimbic response which leads to food craving. Moreover, cannabinoid agonists are able to reduce inflammatory response. In this review a brief history of cannabinoids and the protagonists of the endocannabinoidergic system, i.e. synthesis and degradation enzymes and main receptors, will be described. Furthermore, the pharmacological effects of cannabinoids will be outlined. An overview of the involvement of the endocannabinoidergic system in neuroinflammatory and metabolic pathologies will be made. Finally, particular attention will also be given to the new pharmacological entities acting on the two main receptors, cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2), with particular focus on the neuroinflammatory and metabolic mechanisms involved.


Assuntos
Canabinoides/farmacologia , Síndrome Metabólica/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Canabinoides/metabolismo , Canabinoides/uso terapêutico , Humanos , Síndrome Metabólica/tratamento farmacológico , Receptores de Canabinoides/metabolismo
16.
Neuropharmacology ; 133: 366-374, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29454840

RESUMO

Several studies on humans and mice support oxytocin's role in improving social behaviour, but its use in pharmacotherapy presents some important limiting factors. To date, it is emerging a pharmacological potential for melanocortin 4 receptor (MC4R) agonism in social deficits treatment. Recently, we demonstrated that the deletion of the NFKB1 gene, which encodes the p50 NF-κB subunit, causes impairment in social behaviours, with reductions in social interactions in mice. In this work, we tested the acute effects of THIQ, a selective melanocortin 4 receptor (MC4R) agonist. THIQ treatment increased social interactions both in wild type and p50-/- mice. In particular, after treatment with THIQ, p50-/- mice showed a prosocial behaviour analogous to that of basal WT mice. Moreover, intranasal treatment with an oxytocin antagonist blocked social interactions induced by THIQ, demonstrating that its prosocial effects are mediated by the oxytocin pathway. The data obtained reinforce using MC4R agonists to ameliorate social impairment in NDDs.


Assuntos
Ocitocina/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais/fisiologia , Transtornos do Comportamento Social/metabolismo , Animais , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Relações Interpessoais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Subunidade p50 de NF-kappa B/deficiência , Subunidade p50 de NF-kappa B/genética , Ocitocina/genética , RNA Mensageiro/metabolismo , Radioimunoensaio , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/genética , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transtornos do Comportamento Social/tratamento farmacológico , Transtornos do Comportamento Social/genética , Tetra-Hidroisoquinolinas/uso terapêutico , Triazóis/uso terapêutico
17.
Cereb Cortex ; 26(6): 2832-49, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26946128

RESUMO

Alterations in genes that regulate neurodevelopment can lead to cortical malformations, resulting in malfunction during postnatal life. The NF-κB pathway has a key role during neurodevelopment by regulating the maintenance of the neural progenitor cell pool and inhibiting neuronal differentiation. In this study, we evaluated whether mice lacking the NF-κB p50 subunit (KO) present alterations in cortical structure and associated behavioral impairment. We found that, compared with wild type (WT), KO mice at postnatal day 2 present an increase in radial glial cells, an increase in Reelin protein expression levels, in addition to an increase of specific layer thickness. Moreover, adult KO mice display abnormal columnar organization in the somatosensory cortex, a specific decrease in somatostatin- and parvalbumin-expressing interneurons, altered neurite orientation, and a decrease in Synapsin I protein levels. Concerning behavior, KO mice, in addition to an increase in locomotor and exploratory activity, display impairment in social behaviors, with a reduction in social interaction. Finally, we found that risperidone treatment decreased hyperactivity of KO mice, but had no effect on defective social interaction. Altogether, these data add complexity to a growing body of data, suggesting a link between dysregulation of the NF-κB pathway and neurodevelopmental disorders pathogenesis.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Subunidade p50 de NF-kappa B/metabolismo , Comportamento Social , Animais , Encéfalo/crescimento & desenvolvimento , Moléculas de Adesão Celular Neuronais/metabolismo , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Interneurônios/metabolismo , Interneurônios/patologia , Masculino , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Subunidade p50 de NF-kappa B/genética , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Neuritos/patologia , Parvalbuminas/metabolismo , Proteína Reelina , Risperidona/farmacologia , Serina Endopeptidases/metabolismo , Somatostatina/metabolismo , Sinapsinas/metabolismo , Tranquilizantes/farmacologia
18.
Neurodegener Dis ; 13(2-3): 93-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24008813

RESUMO

Functional and structural plasticity is a fundamental property of the brain involving chemical, electrical, molecular and cellular responses and leading to reorganization of connections within a brain region and/or between brain regions. The Notch pathway has been recognized as one of the main contributors in regulating neural development and has been proposed as a key mediator in neuroplasticity. We supported this concept, demonstrating that Notch plays a role in determining the only possible 'cell fate' decisions in post-mitotic mature neurons: synaptic remodelling or neurite extension/retraction. We demonstrated that Notch pathway activation causes a decrease in neurite branching and a loss of varicosities, with consequent reduction in the release of neurotransmitters. Furthermore, in dysfunctional neurons that present Notch pathway hyper-activation, neuronal morphology was reverted by Notch-inhibiting agents. Potentially, a better understanding of the molecular events participating in neuroplasticity may provide relevant information for innovative therapeutic approaches in a variety of neurological disorders. Hence, we propose a Notch-signalling fine-tuned manipulation as a novel approach to modulate neuronal cytoskeleton plasticity in order to prevent dysfunctional structural plasticity in neurodegenerative diseases.


Assuntos
Citoesqueleto/metabolismo , Doenças Neurodegenerativas/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Receptores Notch/metabolismo , Encéfalo/metabolismo , Humanos , Transdução de Sinais/fisiologia
19.
Life Sci ; 92(17-19): 903-10, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23562853

RESUMO

AIM: Oxidative stress is considered one of the main events that lead to aging and neurodegeneration. Antioxidant treatments used to counteract oxidative damage have been associated with a wide variety of side effects or at the utmost to be ineffective. The aim of the present study was to investigate the antioxidant property of a natural mineral, the tribomechanically micronized zeolite (MZ). MAIN METHODS: Cell death and oxidative stress were assessed in retinoic acid differentiated SH-SY5Y cells, a neuronal-like cell line, after a pro-oxidant stimulus. In vivo evaluation of antioxidant activity and amyloidogenic processing of beta amyloid have been evaluated in a transgenic model of aging related neurodegeneration, the APPswePS1dE9 transgenic mice (tg mice) after a five-month long period of water supplementation with MZ. KEY FINDINGS: The study showed that 24h of cell pretreatment with MZ (1) protected the cells by radical oxygen species (ROS)-induced cell death and moreover (2) induced a reduction of the mitochondrial ROS production following a pro-oxidant stimulation. Looking for an antioxidant effect of MZ in vivo, we found (3) an increased activity of the endogenous antioxidant enzyme superoxide dismutase (SOD) in the hippocampus of tg mice and (4) a reduction in amyloid levels and plaque load in MZ treated tg mice compared to control tg mice. SIGNIFICANCE: Our results suggest MZ as a novel potential adjuvant in counteracting oxidative stress and plaque accumulation in the field of neurodegenerative diseases.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Placa Amiloide/tratamento farmacológico , Zeolitas/farmacologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Morte Celular , Linhagem Celular Tumoral , Suplementos Nutricionais , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neuroblastoma/metabolismo , Placa Amiloide/patologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
20.
BMC Pharmacol ; 10: 2, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20137065

RESUMO

BACKGROUND: Pramipexole exists as two isomers. The S(-) enantiomer is a potent D3/D2 receptor agonist and is extensively used in the management of PD. In contrast, the R(+) enantiomer is virtually devoid of any of the DA agonist effects. Very limited studies are available to characterize the pharmacological spectrum of the R(+) enantiomer of pramipexole. RESULTS: Using differentiated SH-SY5Y neuroblastoma cells as an experimental model, here we show that S(-) and R(+) pramipexole are endowed with equipotent efficacy in preventing cell death induced by H2O2 and inhibiting mitochondrial reactive oxygen species generation. Both pramipexole enantiomers prevented mitochondrial ROS generation with a potency about ten times higher then that elicited for neuroprotection. CONCLUSIONS: These results support the concept of both S(-) and R(+) pramipexole enantiomers as mitochondria-targeted antioxidants and suggest that the antioxidant, neuroprotective activity of these drugs is independent of both the chiral 6-propylamino group in the pramipexole molecule and the DA receptor stimulation.


Assuntos
Antioxidantes/administração & dosagem , Benzotiazóis/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Antagonistas de Dopamina/administração & dosagem , Sistemas de Liberação de Medicamentos , Humanos , Peróxido de Hidrogênio/toxicidade , Mitocôndrias/patologia , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Pramipexol , Rosiglitazona , Tiazolidinedionas/farmacologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...