Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Signal Behav ; 18(1): 2277578, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38051638

RESUMO

For a long time, electrical signaling was neglected at the expense of signaling studies in plants being concentrated with chemical and hydraulic signals. Studies conducted in recent years have revealed that plants are capable of emitting, processing, and transmitting bioelectrical signals to regulate a wide variety of physiological functions. Many important biological and physiological phenomena are accompanied by these cellular electrical manifestations, which supports the hypothesis about the importance of bioelectricity as a fundamental 'model' for response the stresses environmental and for activities regeneration of these organisms. Electrical signals have also been characterized and discriminated against in genetically modified plants under stress mediated by sucking insects and/or by the application of systemic insecticides. Such results can guide future studies that aim to elucidate the factors involved in the processes of resistance to stress and plant defense, thus aiding in the development of successful strategies in integrated pest management. Therefore, this mini review includes the results of studies aimed at electrical signaling in response to biotic stress. We also demonstrated how the generation and propagation of electrical signals takes place and included a description of how these electrical potentials are measured.


Assuntos
Fenômenos Eletrofisiológicos , Defesa das Plantas contra Herbivoria , Plantas , Estresse Fisiológico , Animais , Herbivoria/fisiologia , Insetos/fisiologia , Controle de Pragas/métodos , Transdução de Sinais , Estresse Fisiológico/fisiologia , Fenômenos Fisiológicos Vegetais , Defesa das Plantas contra Herbivoria/fisiologia , Fenômenos Eletrofisiológicos/fisiologia
2.
PLoS One ; 16(4): e0249699, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33831084

RESUMO

Plants have developed various mechanisms to respond specifically to each biotrophic attack. It has been shown that the electrical signals emitted by plants are associated with herbivory stress responses and can lead to the activation of multiple defences. Bt cotton is a genetically modified pest-resistant plant that produces an insecticide from Bacillus thuringiensis (Bt) to control Lepidopteran species. Surprisingly, there is no study-yet, that characterizes the signalling mechanisms in transgenic cotton plants attacked by non-target insects, such as aphids. In this study, we characterized the production of electrical signals on Bt and non-Bt cotton plants infested with Aphis gossypii and, in addition, we characterized the dispersal behaviour of aphids to correlate this behaviour to plant signalling responses. Electrical signalling of the plants was recorded with an extracellular measurement technique. Impressively, our results showed that both Bt and non-Bt cotton varieties, when attacked by A. gossypii, emitted potential variation-type electrical signals and clearly showed the presence of distinct responses regarding their perception and the behaviour of aphids, with evidence of delay, in terms of signal amount, and almost twice the amount of Cry1F protein was observed on Bt cotton plants at the highest density of insects/plant. We present in our article some hypotheses that are based on plant physiology and insect behaviour to explain the responses found on Bt cotton plants under aphid stress.


Assuntos
Afídeos/microbiologia , Bacillus thuringiensis/metabolismo , Gossypium/microbiologia , Gossypium/parasitologia , Estresse Fisiológico/fisiologia , Animais , Gossypium/genética , Herbivoria/fisiologia , Insetos/microbiologia , Inseticidas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Plantas Geneticamente Modificadas/parasitologia , Transdução de Sinais/genética , Estresse Fisiológico/genética
3.
Chemosphere ; 263: 127561, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33296994

RESUMO

Plants and insects are parts of a complex system that involves interactions among many trophic levels, and it is important to understand the nature of such interactions. In the complex of interactions involving aphids and transgenic cotton expressing Bacillus thuringiensis, both the spraying of neonicotinoids and the occurrence of predatory coccinellids are common. However, there are gaps regarding the knowledge about possible impacts of neonicotinoids on physiological variables of the host plant and behavioural traits of the aphid (Aphis gossypii) and predator (Cycloneda sanguinea). Therefore, this study aimed to highlight the photosynthetic and electrical responses of the plant to the stress caused by the aphid attack combined with the stress generated by the use of imidacloprid in Bt and non-Bt cotton (Gossypium hirsutum L.) cultivars and to evaluate how this stress can influence the behavioural ecology of the predator and prey. Chlorophyll a fluorescence tests, dark respiration and electrophysiology on non-Bt and Bt cotton were carried out, the behaviour of the prey and predator was also evaluated with a video capture system. Our research is a study model that generates insights about possible impacts when using Imidacloprid without the occurrence of the pest on the plant, because the exposure of non-Bt and Bt cotton plants and the predator to imidacloprid unnecessarily, may result in stress on the physiology of the cotton plants and on the behaviour of the predator.


Assuntos
Afídeos , Animais , Afídeos/genética , Clorofila A , Eletrofisiologia , Fluorescência , Gossypium/genética , Insetos , Neonicotinoides , Nitrocompostos , Plantas Geneticamente Modificadas , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...