Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicon ; 217: 96-106, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35977615

RESUMO

OBJECTIVE: To investigate the in vitro activity, synergism, cytotoxicity and cellular immunological response, as well as the molecular affinity between amphotericin B (AmB) and crotamine (CTA), derived from Crotalus durissus terrificus venom against Leishmania amazonensis. METHODS: This study performed the inhibition of promastigotes and amastigotes' growth under different concentrations of the drug and pharmacological combinations (AmB + CTA) based on the Berimbaum method (synergism study). The lactate dehydrogenase (LDH) quantification method was used to determine the cytotoxicity of the drug and combinations employing four cell lines (J774, HepG2, VERO, and C2C12). Following, the levels of Tumour Necrose Factor-alpha (TNF-α) and Interleukin-12 (IL-12) cytokines, using enzyme-linked immunosorbent assay (ELISA) and nitrites, as an indirect measure of Nitric Oxide (NO), using the Griess reaction were assessed in the supernatants of infected macrophages. In silico approach (molecular docking and dynamics) and binding affinity (surface plasmon resonance) between the drug and toxin were also investigated. RESULTS: CTA enhanced AmB effect against promastigote and amastigote forms of L. amazonensis, decreased the drug toxicity in different cell lines and induced the production of important Th1-like cytokines and NO by infected macrophages. The pharmacological combination also displayed consistent molecular interactions with low energy of coupling and a concentration-dependent profile. CONCLUSION: Our data suggest that this pharmacological approach is a promising alternative treatment against L. amazonensis infection due to the improved activity (synergistic effect) achieved against the parasites' forms and to the decreased cytotoxic effect.


Assuntos
Antiprotozoários , Venenos de Crotalídeos , Anfotericina B/metabolismo , Anfotericina B/toxicidade , Animais , Antiprotozoários/farmacologia , Venenos de Crotalídeos/química , Crotalus/metabolismo , Citocinas/metabolismo , Simulação de Acoplamento Molecular , Óxido Nítrico/metabolismo
2.
Int Immunopharmacol ; 47: 227-230, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28433944

RESUMO

American tegumentary leishmaniasis (ATL) is considered a neglected disease, for which an effective vaccine or an efficient diagnosis is not yet available and whose chemotherapeutic arsenal is threatened by the emergence of resistance by etiological agents such as Leishmania amazonensis. ATL is endemic in poor countries and has a high incidence in Brazil. Vaccines developed from native parasite fractions have led to the identification of defined antigenic subunits and the development of vaccine adjuvant technology. The purpose of the present study was to develop and compare preparations based on membrane antigens from L. amazonensis, as a biotechnological prototype for the immunoprophylaxis of the disease in a murine experimental model. For this purpose, batches of biodegradable polymeric micro/nanoparticles were produced, characterized and compared with other parasite's antigens in solution. All preparations containing membrane antigens presented low toxicity on murine macrophages. The in vivo evaluation of immunization efficacy was performed against a challenge with L. amazonensis, along with an evaluation of the immune response profile generated in BALB/C mice. The animals were followed for sample processing and quantification of serum-specific cytokines, nitrites and antibodies. The sera of animals immunized with the non-encapsulated antigen formulations showed higher intensities of nitrites and total IgGs. This approach evidenced the importance of the biological studies involving the immune response of the host against the parasite being interconnected and related to the subfractionation of its proteins in the search for more effective vaccine candidates.


Assuntos
Antígenos de Protozoários/imunologia , Leishmania/imunologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose Cutânea/imunologia , Leishmaniose/imunologia , Macrófagos/imunologia , Proteínas de Membrana/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Células Cultivadas , Citocinas/sangue , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Nanopartículas , Óxido Nítrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA