Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961398

RESUMO

Urine is assayed alongside blood in medicine, yet current clinical diagnostic tests utilize only a small fraction of its total biomolecular repertoire, potentially foregoing high-resolution insights into human health and disease. In this work, we characterized the joint landscapes of transcriptomic and metabolomic signals in human urine. We also compared the urine transcriptome to plasma cell-free RNA, identifying a distinct cell type repertoire and enrichment for metabolic signal. Untargeted metabolomic measurements identified a complementary set of pathways to the transcriptomic analysis. Our findings suggest that urine is a promising biofluid yielding prognostic and detailed insights for hard-to-biopsy tissues with low representation in the blood, offering promise for a new generation of liquid biopsies.

2.
J Endourol ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37432899

RESUMO

BACKGROUND: Detection of bladder tumors under white light cystoscopy (WLC) is challenging yet impactful on treatment outcomes. Artificial intelligence (AI) holds the potential to improve tumor detection; however, its application in the real-time setting remains unexplored. AI has been applied to previously recorded images for post hoc analysis. In this study, we evaluate the feasibility of real-time AI integration during clinic cystoscopy and transurethral resection of bladder tumor (TURBT) on live, streaming video. METHODS: Patients undergoing clinic flexible cystoscopy and TURBT were prospectively enrolled. A real-time alert device system (real-time CystoNet) was developed and integrated with standard cystoscopy towers. Streaming videos were processed in real time to display alert boxes in sync with live cystoscopy. The per-frame diagnostic accuracy was measured. RESULTS AND LIMITATIONS: Real-time CystoNet was successfully integrated in the operating room during TURBT and clinic cystoscopy in 50 consecutive patients. There were 55 procedures that met the inclusion criteria for analysis including 21 clinic cystoscopies and 34 TURBTs. For clinic cystoscopy, real-time CystoNet achieved per-frame tumor specificity of 98.8% with a median error rate of 3.6% (range: 0 - 47%) frames per cystoscopy. For TURBT, the per-frame tumor sensitivity was 52.9% and the per-frame tumor specificity was 95.4% with an error rate of 16.7% for cases with pathologically confirmed bladder cancers. CONCLUSIONS: The current pilot study demonstrates the feasibility of using a real-time AI system (real-time CystoNet) during cystoscopy and TURBT to generate active feedback to the surgeon. Further optimization of CystoNet for real-time cystoscopy dynamics may allow for clinically useful AI-augmented cystoscopy.

3.
Nat Commun ; 14(1): 3711, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349287

RESUMO

Only 60-75% of conventional kidney stone surgeries achieve complete stone-free status. Up to 30% of patients with residual fragments <2 mm in size experience subsequent stone-related complications. Here we demonstrate a stone retrieval technology in which fragments are rendered magnetizable with a magnetic hydrogel so that they can be easily retrieved with a simple magnetic tool. The magnetic hydrogel facilitates robust in vitro capture of stone fragments of clinically relevant sizes and compositions. The hydrogel components exhibit no cytotoxicity in cell culture and only superficial effects on ex vivo human urothelium and in vivo mouse bladders. Furthermore, the hydrogel demonstrates antimicrobial activity against common uropathogens on par with that of common antibiotics. By enabling the efficient retrieval of kidney stone fragments, our method can lead to improved stone-free rates and patient outcomes.


Assuntos
Cálculos Renais , Ureteroscopia , Animais , Camundongos , Humanos , Hidrogéis , Cálculos Renais/cirurgia , Magnetismo , Fenômenos Magnéticos
4.
Small Methods ; 6(1): e2101254, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041266

RESUMO

The global threat of antibiotic resistance underscores critical but unmet needs for rapid antibiotic susceptibility testing (AST) technologies. To this end, droplet microfluidic-based single-cell AST offers promise by achieving unprecedented rapidity, but its potential for clinical use is marred by the capacity of testing one to few antibiotic conditions per device, which falls short from the required scale in clinically relevant scenarios. To lift the scalability constraint in rapid single-cell AST technologies, a new cascaded droplet microfluidic platform that can streamline bacteria/antibiotic mixing, single-cell encapsulation within picoliter droplets, incubation, and detection in a continuous, assembly-line-like workflow is developed. The scalability of the platform is demonstrated by generating 32 groups of ≈10 000 droplets with custom antibiotic conditions within a single device, from which a new statistics-based method is used to analyze the single cell data and produce clinically useful antibiograms with minimum inhibitory concentrations in ≈90 min for the first antibiotic, plus 2 min for each subsequent antibiotic condition. Potential clinical utility of this platform is demonstrated by testing three clinical isolates and eight urine specimens against four frequently used antibiotics, and 100% and 93.8% categorical agreements are achieved compared to laboratory-based results that became available after 48 h.


Assuntos
Antibacterianos , Microfluídica , Antibacterianos/farmacologia , Bactérias , Resistência Microbiana a Medicamentos , Testes de Sensibilidade Microbiana , Microfluídica/métodos
5.
Acc Chem Res ; 55(2): 123-133, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34898173

RESUMO

Antimicrobial resistance is a global threat that if left unchecked could lead to 10 million annual mortalities by 2050. One factor contributing to the rise of multi-drug-resistant (MDR) pathogens is the reliance on traditional culture-based pathogen identification (ID) and antimicrobial susceptibility testing (AST) that typically takes several days. This delay of objective pathogen ID and AST information to inform clinical decision making results in clinicians treating patients empirically often using first-line, broad-spectrum antibiotics, contributing to the misuse/overuse of antibiotics. To combat the rise in MDR pathogens, there is a critical demand for rapid ID and AST technologies. Among the advances in ID and AST technologies in the past decade, single-cell diagnostic technologies powered by droplet microfluidics offer great promise due to their potential for high-sensitivity detection and rapid turnaround time. Our laboratory has been at the forefront of developing such technologies and applying them to diagnosing urinary tract infections (UTIs), one of the most common infections and a frequent reason for the prescription of antimicrobials. For pathogen ID, we first demonstrated the highly sensitive, amplification-free detection of single bacterial cells by confining them in picoliter-scale droplets and detection with fluorogenic peptide nucleic acid (PNA) probes that target their 16S rRNA (rRNA), a well-characterized marker for phylogenic classification. We subsequently improved the PNA probe design and enhanced detection sensitivity. For single-cell AST, we first employed a growth indicator dye and engineered an integrated device that allows us to detect growth from single bacterial cells under antibiotic exposure within 1 h, equivalent to two to three bacterial replications. To expand beyond testing a single antibiotic condition per device, a common limitation for droplet microfluidics, we developed an integrated programmable droplet microfluidic device for scalable single-cell AST. Using the scalable single-cell AST platform, we demonstrated the generation of up to 32 droplet groups in a single device with custom antibiotic titers and the capacity to scale up single-cell AST, and providing reliable pathogen categories beyond a binary call embodies a critical advance. Finally, we developed an integrated ID and AST platform. To this end, we developed a PNA probe panel that can identify nearly 90% of uropathogens and showed the quantitative detection of 16S rRNA from single bacterial cells in droplet-enabled AST after as little as 10 min of antibiotic exposure. This platform achieved both ID and AST from minimally processed urine samples in 30 min, representing one of the fastest turnaround times to date. In addition to tracing the development of our technologies, we compare them with contemporary research advances and offer our perspectives for future development, with the vision that single-cell ID and AST technologies powered by droplet microfluidics can indeed become a useful diagnostic tool for combating antimicrobial resistance.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Humanos , Testes de Sensibilidade Microbiana , Microfluídica/métodos , RNA Ribossômico 16S
6.
Analyst ; 146(8): 2475-2483, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33899069

RESUMO

The development of accelerated methods for pathogen identification (ID) and antimicrobial susceptibility testing (AST) for infectious diseases is necessary to facilitate evidence-based antibiotic therapy and reduce clinical overreliance on broad-spectrum antibiotics. Towards this end, droplet-based microfluidics has unlocked remarkably rapid diagnostic assays with single-cell and single-molecule resolution. Yet, droplet platforms invariably rely on testing purified bacterial samples that have been clinically isolated after lengthy (>16 h) plating. While plating-based clinical isolation is important for enriching and separating out bacteria from background in clinical samples and also facilitating buffer exchange, it creates a diagnostic bottleneck that ultimately precludes droplet-based methods from achieving significantly accelerated times-to-result. To alleviate this bottleneck, we have developed facile syringe filter-enabled strategies for bacterial separation, enrichment, and buffer exchange from urine samples. By selecting appropriately sized filter membranes, we separated bacterial cells from background particulates in urine samples and achieved up to 91% bacterial recovery after such 1-step filtration. When interfaced with droplet-based detection of bacterial cells, 1-step filtration improved the limit of detection for bacterial ID and quantification by over an order of magnitude. We also developed a facile buffer exchange strategy to prepare bacteria in urine samples for droplet-based AST that achieved up to 10-fold bacterial enrichment during buffer exchange. Our filtration strategies, can be easily integrated into droplet workflows, enable clinical isolation-free sample-to-answer ID and AST, and significantly accelerate the turnaround of standard infectious disease diagnostic workflows.


Assuntos
Bactérias , Seringas , Antibacterianos , Testes de Sensibilidade Microbiana , Microfluídica
7.
Urol Oncol ; 39(8): 497.e9-497.e15, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33766467

RESUMO

OBJECTIVES: The risk of bladder cancer (BCa) diagnosis and recurrence necessitates cystoscopy. Improved risk stratification may inform personalized triage and surveillance strategies. We aim to develop a urinary mRNA biomarker panel for risk stratification in patients undergoing BCa screening and surveillance. METHODS AND MATERIALS: Urine samples were collected from patients undergoing cystoscopy for BCa screening or surveillance. In patients who underwent transurethral resection of bladder tumor, urine samples were categorized based on tumor histopathology, size, and focality. Subjects with intermediate and high-risk BCa based on American Urological Association (AUA) guideline for non-muscle invasive bladder cancer were classified as "increased-risk"; those with no cancer and AUA low-risk BCa were classified as "low-risk". Urine was evaluated for ROBO1, WNT5A, CDC42BPB, ABL1, CRH, IGF2, ANXA10, and UPK1B expression. A diagnostic model to detect "increased-risk" BCa was created using forward logistic regression analysis of cycle threshold values. Model validation was performed with ten-fold cross-validation. Sensitivity and specificity for detection of "increased-risk" BCa was determined and net benefit analysis performed. RESULTS: Urine samples (n = 257) were collected from 177 patients (95 screening, 76 surveillance, 6 both). There were 65 diagnoses of BCa (12 low, 22 intermediate, 31 high risk). ROBO1, CRH, and IGF2 expression correlated with "increased-risk" disease yielding sensitivity of 92.5% (95% CI, 84.9%-98.1%) and specificity of 73.5% (95% CI, 67.7-79.9%). The overall calculated standardized net benefit of the model was 0.81 (95%CI, 0.71-0.90). CONCLUSIONS: A 3-marker urinary mRNA panel allows for non-invasive identification of "increased-risk" BCa and with further validation may prove to be a tool to reduce the need for cystoscopies in low-risk patients.


Assuntos
Biomarcadores Tumorais/urina , Cistoscopia/métodos , RNA Mensageiro/urina , Medição de Risco/métodos , Neoplasias da Bexiga Urinária/patologia , Idoso , Biomarcadores Tumorais/genética , Feminino , Seguimentos , Humanos , Masculino , Prognóstico , RNA Mensageiro/genética , Taxa de Sobrevida , Triagem , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/cirurgia , Neoplasias da Bexiga Urinária/urina
8.
Adv Sci (Weinh) ; 8(6): 2003419, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33747737

RESUMO

Empiric broad-spectrum antimicrobial treatments of urinary tract infections (UTIs) have contributed to widespread antimicrobial resistance. Clinical adoption of evidence-based treatments necessitates rapid diagnostic methods for pathogen identification (ID) and antimicrobial susceptibility testing (AST) with minimal sample preparation. In response, a microfluidic droplet-based platform is developed for achieving both ID and AST from urine samples within 30 min. In this platform, fluorogenic hybridization probes are utilized to detect 16S rRNA from single bacterial cells encapsulated in picoliter droplets, enabling molecular identification of uropathogenic bacteria directly from urine in as little as 16 min. Moreover, in-droplet single-bacterial measurements of 16S rRNA provide a surrogate for AST, shortening the exposure time to 10 min for gentamicin and ciprofloxacin. A fully integrated device and screening workflow were developed to test urine specimens for one of seven unique diagnostic outcomes including the presence/absence of Gram-negative bacteria, molecular ID of the bacteriaas Escherichia coli, an Enterobacterales, or other organism, and assessment of bacterial susceptibility to ciprofloxacin. In a 50-specimen clinical comparison study, the platform demonstrates excellent performance compared to clinical standard methods (areas-under-curves, AUCs >0.95), within a small fraction of the turnaround time, highlighting its clinical utility.

9.
J Urol ; 204(1): 56, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32282282
10.
Eur Urol ; 76(6): 714-718, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31537407

RESUMO

Adequate tumor detection is critical in complete transurethral resection of bladder tumor (TURBT) to reduce cancer recurrence, but up to 20% of bladder tumors are missed by standard white light cystoscopy. Deep learning augmented cystoscopy may improve tumor localization, intraoperative navigation, and surgical resection of bladder cancer. We aimed to develop a deep learning algorithm for augmented cystoscopic detection of bladder cancer. Patients undergoing cystoscopy/TURBT were recruited and white light videos were recorded. Video frames containing histologically confirmed papillary urothelial carcinoma were selected and manually annotated. We constructed CystoNet, an image analysis platform based on convolutional neural networks, for automated bladder tumor detection using a development dataset of 95 patients for algorithm training and five patients for testing. Diagnostic performance of CystoNet was validated prospectively in an additional 54 patients. In the validation dataset, per-frame sensitivity and specificity were 90.9% (95% confidence interval [CI], 90.3-91.6%) and 98.6% (95% CI, 98.5-98.8%), respectively. Per-tumor sensitivity was 90.9% (95% CI, 90.3-91.6%). CystoNet detected 39 of 41 papillary and three of three flat bladder cancers. With high sensitivity and specificity, CystoNet may improve the diagnostic yield of cystoscopy and efficacy of TURBT. PATIENT SUMMARY: Conventional cystoscopy has recognized shortcomings in bladder cancer detection, with implications for recurrence. Cystoscopy augmented with artificial intelligence may improve cancer detection and resection.


Assuntos
Carcinoma de Células de Transição/patologia , Cistoscopia/métodos , Aprendizado Profundo , Neoplasias da Bexiga Urinária/patologia , Carcinoma de Células de Transição/cirurgia , Humanos , Neoplasias da Bexiga Urinária/cirurgia
11.
Urol Oncol ; 37(11): 809.e1-809.e8, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31537485

RESUMO

INTRODUCTION: Surgical management of penile cancer depends on accurate margin assessment and staging. Advanced optical imaging technologies may improve penile biopsy and organ-sparing treatment. We evaluated the feasibility of confocal laser endomicroscopy for intraoperative assessment of benign and malignant penile tissue. PATIENTS AND METHODS: With institutional review board approval, 11 patients were recruited, 9 with suspected penile cancer, and 2 healthy controls. Confocal laser endomicroscopy using a 2.6-mm fiber-optic probe was performed at 1 or 2 procedures on all subjects, for 13 imaging procedures. Fluorescein was administered intravenously approximately 3 minutes prior to imaging for contrast. Video sequences from in vivo (n = 12) and ex vivo (n = 6) imaging were obtained of normal glans, suspicious lesions, and surgical margins. Images were processed, annotated, characterized, and correlated with standard hematoxylin and eosin histopathology. RESULTS: No adverse events related to imaging were reported. Distinguishing features of benign and malignant penile tissue could be identified by confocal laser endomicroscopy. Normal skin had cells of uniform size and shape, with distinct cytoplasmic membranes consistent with squamous epithelium. Malignant lesions were characterized by disorganized, crowded cells of various size and shape, lack of distinct cytoplasmic membranes, and hazy, moth-eaten appearance. The transition from normal to abnormal squamous epithelium could be identified. CONCLUSIONS: We report the initial feasibility of intraoperative confocal laser endomicroscopy for penile cancer optical biopsy. Pending further evaluation, confocal laser endomicroscopy could serve as an adjunct or replacement to conventional frozen section pathology for management of penile cancer.


Assuntos
Neoplasias Penianas/patologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Viabilidade , Humanos , Biópsia Guiada por Imagem , Período Intraoperatório , Masculino , Microscopia Confocal , Neoplasias Penianas/cirurgia
12.
Proc Natl Acad Sci U S A ; 116(21): 10270-10279, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31068473

RESUMO

Infectious diseases caused by bacterial pathogens remain one of the most common causes of morbidity and mortality worldwide. Rapid microbiological analysis is required for prompt treatment of bacterial infections and to facilitate antibiotic stewardship. This study reports an adaptable microfluidic system for rapid pathogen classification and antimicrobial susceptibility testing (AST) at the single-cell level. By incorporating tunable microfluidic valves along with real-time optical detection, bacteria can be trapped and classified according to their physical shape and size for pathogen classification. By monitoring their growth in the presence of antibiotics at the single-cell level, antimicrobial susceptibility of the bacteria can be determined in as little as 30 minutes compared with days required for standard procedures. The microfluidic system is able to detect bacterial pathogens in urine, blood cultures, and whole blood and can analyze polymicrobial samples. We pilot a study of 25 clinical urine samples to demonstrate the clinical applicability of the microfluidic system. The platform demonstrated a sensitivity of 100% and specificity of 83.33% for pathogen classification and achieved 100% concordance for AST.


Assuntos
Anti-Infecciosos , Microfluídica , Antibacterianos , Disbiose , Humanos , Testes de Sensibilidade Microbiana
13.
Clin Cancer Res ; 25(12): 3561-3571, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30890547

RESUMO

PURPOSE: Near-infrared photoimmunotherapy (NIR-PIT) is a localized molecular cancer therapy combining a photosensitizer-conjugated mAb and light energy. CD47 is an innate immune checkpoint widely expressed on bladder cancer cells, but absent from luminal normal urothelium. Targeting CD47 for NIR-PIT has the potential to selectively induce cancer cell death and minimize damage to normal urothelium. EXPERIMENTAL DESIGN: The cytotoxic effect of NIR-PIT with anti-CD47-IR700 was investigated in human bladder cancer cell lines and primary human bladder cancer cells derived from fresh surgical samples. Phagocytosis assays were performed to evaluate macrophage activity after NIR-PIT. Anti-CD47-IR700 was administered to murine xenograft tumor models of human bladder cancer for in vivo molecular imaging and NIR-PIT. RESULTS: Cytotoxicity in cell lines and primary bladder cancer cells significantly increased in a light-dose-dependent manner with CD47-targeted NIR-PIT. Phagocytosis of cancer cells significantly increased with NIR-PIT compared with antibody alone (P = 0.0002). In vivo fluorescence intensity of anti-CD47-IR700 in tumors reached a peak 24-hour postinjection and was detectable for at least 14 days. After a single round of CD47-targeted NIR-PIT, treated animals showed significantly slower tumor growth compared with controls (P < 0.0001). Repeated CD47-targeted NIR-PIT treatment further slowed tumor growth (P = 0.0104) and improved survival compared with controls. CONCLUSIONS: CD47-targeted NIR-PIT increased direct cancer cell death and phagocytosis resulting in inhibited tumor growth and improved survival in a murine xenograft model of human bladder cancer.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/farmacologia , Antígeno CD47/antagonistas & inibidores , Imunoterapia/métodos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Neoplasias da Bexiga Urinária/terapia , Animais , Feminino , Humanos , Masculino , Camundongos , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Nanomedicine ; 17: 246-253, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30794964

RESUMO

A nanotube assisted microwave electroporation (NAME) technique is demonstrated for delivering molecular biosensors into viable bacteria for multiplex single cell pathogen identification to advance rapid diagnostics in clinical microbiology. Due to the small volume of a bacterial cell (~femtoliter), the intracellular concentration of the target molecule is high, which results in a strong signal for single cell detection without amplification. The NAME procedure can be completed in as little as 30 minutes and can achieve over 90% transformation efficiency. We demonstrate the feasibility of NAME for identifying clinical isolates of bloodborne and uropathogenic pathogens and detecting bacterial pathogens directly from patient's samples. In conjunction with a microfluidic single cell trapping technique, NAME allows single cell pathogen identification and antimicrobial susceptibility testing concurrently. Using this approach, the time for microbiological analysis reduces from days to hours, which will have a significant impact on the clinical management of bacterial infections.


Assuntos
Bactérias/isolamento & purificação , Infecções Bacterianas/diagnóstico , Eletroporação/instrumentação , Nanotubos/química , Análise de Célula Única/instrumentação , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Desenho de Equipamento , Humanos , Testes de Sensibilidade Microbiana/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Micro-Ondas
15.
Analyst ; 144(5): 1565-1574, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30656297

RESUMO

Point-of-care (POC) diagnostics for infectious diseases have the potential to improve patient care and antibiotic stewardship. Nucleic acid hybridization is at the core of many amplification-free molecular diagnostics and detection probe configuration is key to diagnostic performance. Modified nucleic acids such as peptide nucleic acid (PNA) offer advantages compared to conventional DNA probes allowing for faster hybridization, better stability and minimal sample preparation for direct detection of pathogens. Probes with tethered fluorophore and quencher allow for solution-based assays and eliminate the need for washing steps thereby facilitating integration into microfluidic devices. Here, we compared the sensitivity and specificity of double stranded PNA probes (dsPNA) and PNA molecular beacons targeting E. coli and P. aeruginosa for direct detection of bacterial pathogens. In bulk fluid assays, the dsPNAs had an overall higher fluorescent signal and better sensitivity and specificity than the PNA beacons for pathogen detection. We further designed and tested an expanded panel of dsPNA probes for detection of a wide variety of pathogenic bacteria including probes for universal detection of eubacteria, Enterobacteriaceae family, and P. mirablis. To confirm that the advantage translated to other assay types we compared the PNA beacon and dsPNA in a prototype droplet microfluidic device. Beyond the bulk fluid assay and droplet devices, use of dsPNA probes may be advantageous in a wide variety of assays that employ homogenous nucleic acid hybridization.


Assuntos
Escherichia coli/isolamento & purificação , Ácidos Nucleicos Peptídicos/genética , Pseudomonas aeruginosa/isolamento & purificação , RNA Bacteriano/genética , Técnicas Bacteriológicas/instrumentação , Técnicas Bacteriológicas/métodos , Escherichia coli/genética , Fluorescência , Corantes Fluorescentes/química , Fluorometria/métodos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Hibridização de Ácido Nucleico , Testes Imediatos , Pseudomonas aeruginosa/genética , RNA Ribossômico 16S/genética
16.
Anal Chem ; 90(15): 9449-9456, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29969556

RESUMO

Simple, fast, and precise counting of viable bacteria is fundamental to a variety of microbiological applications such as food quality monitoring and clinical diagnosis. To this end, agar plating, microscopy, and emerging microfluidic devices for single bacteria detection have provided useful means for counting viable bacteria, but they also have their limitations ranging from complexity, time, and inaccuracy. We present herein our new method RAPiD (Resazurin-Amplified Picoarray Detection) for addressing this important problem. In RAPiD, we employ vacuum-assisted sample loading and oil-driven sample digitization to stochastically confine single bacteria in Picoarray, a microfluidic device with picoliter-sized isolation chambers (picochambers), in <30 s with only a few minutes of hands-on time. We add AlamarBlue, a resazurin-based fluorescent dye for bacterial growth, in our assay to accelerate the detection of "microcolonies" proliferated from single bacteria within picochambers. Detecting fluorescence in picochambers as an amplified surrogate for bacterial cells allows us to count hundreds of microcolonies with a single image taken via wide-field fluorescence microscopy. We have also expanded our method to practically test multiple titrations from a single bacterial sample in parallel. Using this expanded "multi-RAPiD" strategy, we can quantify viable cells in E. coli and S. aureus samples with precision in ∼3 h, illustrating RAPiD as a promising new method for counting viable bacteria for microbiological applications.


Assuntos
Corantes/química , Escherichia coli/citologia , Dispositivos Lab-On-A-Chip , Viabilidade Microbiana , Oxazinas/química , Staphylococcus aureus/citologia , Xantenos/química , Desenho de Equipamento , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Humanos , Indicadores e Reagentes , Dispositivos Lab-On-A-Chip/economia , Imagem Óptica/métodos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/isolamento & purificação , Fatores de Tempo
17.
J Urol ; 199(3): 655-662, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29061538

RESUMO

PURPOSE: Despite suboptimal sensitivity urine cytology is often performed as an adjunct to cystoscopy for bladder cancer diagnosis. We aimed to develop a noninvasive, fast molecular diagnostic test for bladder cancer detection with better sensitivity than urine cytology while maintaining adequate specificity. MATERIALS AND METHODS: Urine specimens were collected at 18 multinational sites from subjects prior to cystoscopy or tumor resection, and from healthy and other control subjects without evidence of bladder cancer. The levels of 10 urinary mRNAs were measured in a training cohort of 483 subjects and regression analysis was used to identify a 5-mRNA model to predict cancer status. The performance of the GeneXpert® Bladder Cancer Assay, an assay labeled for investigational use only to detect the 5 mRNAs ABL1, CRH, IGF2, ANXA10 and UPK1B, was evaluated in an independent test cohort of 450 participants. RESULTS: In the independent test cohort the assay ROC curve AUC was 0.87 (95% CI 0.81-0.92). At an example cutoff point of 0.4 overall sensitivity was 73% while specificity was 90% and 77% in the hematuria and surveillance patient populations, respectively. CONCLUSIONS: We developed a 90-minute, urine based test that is simple to perform for the detection of bladder cancer. The test can help guide physician decision making in the management of bladder cancer. Additional evaluation in a prospective study is needed to establish the clinical usefulness of this assay.


Assuntos
Carcinoma de Células de Transição/urina , Cistoscopia/métodos , RNA Neoplásico/urina , Neoplasias da Bexiga Urinária/urina , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/urina , Carcinoma de Células de Transição/diagnóstico , Carcinoma de Células de Transição/genética , Feminino , Seguimentos , Marcadores Genéticos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Curva ROC , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/genética , Adulto Jovem
18.
Bladder Cancer ; 3(3): 149-159, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28824942

RESUMO

Transurethral resection of bladder tumor (TURBT) under white light cystoscopy (WLC) is the cornerstone for the diagnosis, removal and local staging of non-muscle invasive bladder cancer (NMIBC). Despite technological improvements over the decades, significant shortcomings remain with WLC for tumor detection, thereby impacting the surgical quality and contributing to tumor recurrence and progression. Enhanced cystoscopy modalities such as blue light cystoscopy (BLC) and narrow band imaging (NBI) aid resections by highlighting tumors that might be missed on WLC. Optical biopsy technologies such as confocal laser endomicroscopy (CLE) and optical coherence tomography (OCT) characterize tissue in real-time to ensure a more thorough resection. New resection techniques, particularly en bloc resection, are actively under investigation to improve the overall quality of resections and aid pathologic interpretation. Moreover, new image processing computer algorithms may improve perioperative planning and longitudinal follow-up. Clinical translation of molecular imaging agents is also on the horizon to improve optical diagnosis of bladder cancer. This review focuses on emerging technologies that can impact the quality of TURBT to improve the overall management of NMIBC.

19.
Sci Rep ; 7(1): 9309, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839158

RESUMO

Optical molecular imaging holds the potential to improve cancer diagnosis. Fluorescent nanoparticles such as quantum dots (QD) offer superior optical characteristics compared to organic dyes, but their in vivo application is limited by potential toxicity from systemic administration. Topical administration provides an attractive route for targeted nanoparticles with the possibility of minimizing exposure and reduced dose. Previously, we demonstrated successful ex vivo endoscopic imaging of human bladder cancer by topical (i.e. intravesical) administration of QD-conjugated anti-CD47. Herein we investigate in vivo biodistribution and toxicity of intravesically instilled free QD and anti-CD47-QD in mice. In vivo biodistribution of anti-CD47-QD was assessed with inductively coupled plasma mass spectrometry. Local and systemic toxicity was assessed using blood tests, organ weights, and histology. On average, there was no significant accumulation of QD outside of the bladder, although in some mice we detected extravesical biodistribution of QD suggesting a route for systemic exposure under some conditions. There were no indications of acute toxicity up to 7 days after instillation. Intravesical administration of targeted nanoparticles can reduce systemic exposure, but for clinical use, nanoparticles with established biosafety profiles should be used to decrease long-term toxicity in cases where systemic exposure occurs.


Assuntos
Imagem Molecular/métodos , Imagem Óptica/métodos , Pontos Quânticos/administração & dosagem , Pontos Quânticos/efeitos adversos , Distribuição Tecidual , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Administração Intravesical , Estruturas Animais/efeitos dos fármacos , Estruturas Animais/patologia , Animais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Histocitoquímica , Espectrometria de Massas , Camundongos , Imagem Molecular/efeitos adversos , Imagem Óptica/efeitos adversos , Plasma/química
20.
Eur Urol Focus ; 3(2-3): 293-299, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28753748

RESUMO

BACKGROUND: Standard diagnosis of urinary tract infection (UTI) via urine culture for pathogen identification (ID) and antimicrobial susceptibility testing (AST) takes 2-3 d. This delay results in empiric treatment and contributes to the misuse of antibiotics and the rise of resistant pathogens. A rapid diagnostic test for UTI may improve patient care and antibiotic stewardship. OBJECTIVE: To develop and validate an integrated biosensor assay for UTI diagnosis, including pathogen ID and AST, with determination of the minimum inhibitory concentration (MIC) for ciprofloxacin. DESIGN, SETTING, AND PARTICIPANTS: Urine samples positive for Enterobacteriaceae (n=84) or culture-negative (n=23) were obtained from the Stanford Clinical Microbiology Laboratory between November 2013 and September 2014. Each sample was diluted and cultured for 5h with and without ciprofloxacin, followed by quantitative detection of bacterial 16S rRNA using a single electrochemical biosensor array functionalized with a panel of complementary DNA probes. Pathogen ID was determined using universal bacterial, Enterobacteriaceae (EB), and pathogen-specific probes. Phenotypic AST with ciprofloxacin MIC was determined using an EB probe to measure 16S rRNA levels as a function of bacterial growth. MEASUREMENTS: Electrochemical signals for pathogen ID at 6 SD over background were considered positive. An MIC signal of 0.4 log units lower than the no-antibiotic control indicated sensitivity. Results were compared to clinical microbiology reports. RESULTS AND LIMITATIONS: For pathogen ID, the assay had 98.5% sensitivity, 96.6% specificity, 93.0% positive predictive value, and 99.3% negative predictive value. For ciprofloxacin MIC the categorical and essential agreement was 97.6%. Further automation, testing of additional pathogens and antibiotics, and a full prospective study will be necessary for translation to clinical use. CONCLUSIONS: The integrated biosensor platform achieved microbiological results including MIC comparable to standard culture in a significantly shorter assay time. Further assay automation will allow clinical translation for rapid molecular diagnosis of UTI. PATIENT SUMMARY: We have developed and validated a biosensor test for rapid diagnosis of urinary tract infections. Clinical translation of this device has the potential to significantly expedite and improve treatment of urinary tract infections.


Assuntos
Técnicas Biossensoriais , Enterobacteriaceae , RNA Ribossômico 16S/análise , Infecções Urinárias/diagnóstico , Infecções Urinárias/urina , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Técnicas Eletroquímicas , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Humanos , Testes de Sensibilidade Microbiana/métodos , Valor Preditivo dos Testes , Urinálise/métodos , Infecções Urinárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...