Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37446212

RESUMO

Mammalian arachidonic acid lipoxygenases (ALOXs) have been implicated in the pathogenesis of inflammatory diseases, and its pro- and anti-inflammatory effects have been reported for different ALOX-isoforms. Human ALOX15B oxygenates arachidonic acid to its 15-hydroperoxy derivative, whereas the corresponding 8-hydroperoxide is formed by mouse Alox15b (Alox8). This functional difference impacts the biosynthetic capacity of the two enzymes for creating pro- and anti-inflammatory eicosanoids. To explore the functional consequences of the humanization of the reaction specificity of mouse Alox15b in vivo, we tested Alox15b knock-in mice that express the arachidonic acid 15-lipoxygenating Tyr603Asp and His604Val double mutant of Alox15b, instead of the arachidonic acid 8-lipoxygenating wildtype enzyme, in two different animal inflammation models. In the dextran sodium sulfate-induced colitis model, female Alox15b-KI mice lost significantly more bodyweight during the acute phase of inflammation and recovered less rapidly during the resolution phase. Although we observed significant differences in the colonic levels of selected pro- and anti-inflammatory eicosanoids during the time-course of inflammation, there were no differences between the two genotypes at any time-point of the disease. In Freund's complete adjuvant-induced paw edema model, Alox15b-KI mice were less susceptible than outbred wildtype controls, though we did not observe significant differences in pain perception (Hargreaves-test, von Frey-test) when the two genotypes were compared. our data indicate that humanization of the reaction specificity of mouse Alox15b (Alox8) sensitizes mice for dextran sodium sulfate-induced experimental colitis, but partly protects the animals in the complete Freund's adjuvant-induced paw edema model.


Assuntos
Colite , Dextranos , Humanos , Camundongos , Feminino , Animais , Ácido Araquidônico , Inflamação/genética , Mamíferos , Anti-Inflamatórios , Edema/induzido quimicamente , Edema/genética , Modelos Animais de Doenças
2.
Inflamm Res ; 72(8): 1649-1664, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37498393

RESUMO

BACKGROUND, OBJECTIVES AND DESIGN: Arachidonic acid 15-lipoxygenase (ALOX15) has been implicated in the pathogenesis of inflammatory diseases but since pro- and anti-inflammatory roles have been suggested, the precise function of this enzyme is still a matter of discussion. To contribute to this discussion, we created transgenic mice, which express human ALOX15 under the control of the activating protein 2 promoter (aP2-ALOX15 mice) and compared the sensitivity of these gain-of-function animals in two independent mouse inflammation models with Alox15-deficient mice (loss-of-function animals) and wildtype control animals. MATERIALS AND METHODS: Transgenic aP2-ALOX15 mice were tested in comparison with Alox15 knockout mice (Alox15-/-) and corresponding wildtype control animals (C57BL/6J) in the complete Freund's adjuvant induced hind-paw edema model and in the dextran sulfate sodium induced colitis (DSS-colitis) model. In the paw edema model, the degree of paw swelling and the sensitivity of the inflamed hind-paw for mechanic (von Frey test) and thermal (Hargreaves test) stimulation were quantified as clinical readout parameters. In the dextran sodium sulfate induced colitis model the loss of body weight, the colon lengths and the disease activity index were determined. RESULTS: In the hind-paw edema model, systemic inactivation of the endogenous Alox15 gene intensified the inflammatory symptoms, whereas overexpression of human ALOX15 reduced the degree of hind-paw inflammation. These data suggest anti-inflammatory roles for endogenous and transgenic ALOX15 in this particular inflammation model. As mechanistic reason for the protective effect downregulation of the pro-inflammatory ALOX5 pathways was suggested. However, in the dextran sodium sulfate colitis model, in which systemic inactivation of the Alox15 gene protected female mice from DSS-induced colitis, transgenic overexpression of human ALOX15 did hardly impact the intensity of the inflammatory symptoms. CONCLUSION: The biological role of ALOX15 in the pathogenesis of inflammation is variable and depends on the kind of the animal inflammation model.


Assuntos
Araquidonato 15-Lipoxigenase , Colite , Humanos , Camundongos , Feminino , Animais , Camundongos Transgênicos , Adjuvante de Freund , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/uso terapêutico , Dextranos/efeitos adversos , Dextranos/metabolismo , Camundongos Endogâmicos C57BL , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/tratamento farmacológico , Colite/metabolismo , Colo/metabolismo , Anti-Inflamatórios/farmacologia , Camundongos Knockout , Edema/induzido quimicamente , Edema/genética , Edema/metabolismo , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Modelos Animais de Doenças
3.
Sci Rep ; 12(1): 15172, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071140

RESUMO

Opioid agonists are powerful drugs for managing pain. However, their central side effects are limiting their use and drugs with similar potency, but a lower risk profile are needed. (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenylpropionamide (NFEPP) is a novel opioid agonist that preferentially activates opioid receptors at acidic extracellular pH. NFEPP was designed to activate peripheral opioid receptors in injured tissue, therefore precluding side effects elicited at normal pH in brain or intestinal wall. Considering the common combination of opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) in multimodal analgesia, we investigated the interaction between NFEPP and a widely prescribed prototypical NSAID, diclofenac (DCF), in a rat model of unilateral hindpaw inflammation induced by complete Freund's adjuvant. We evaluated the effects of systemically applied DCF on the paw tissue pH, on the expression of inflammatory mediators in immune cells from inflamed paws and on the expression of opioid receptors in dorsal root ganglia. Additionally, we investigated the antinociceptive efficacy of NFEPP injected into the inflamed paws after DCF treatment. We found that DCF reduced inflammation-induced nociceptive responses and tissue acidosis, but did not change the mRNA expression of IL-1ß, TNF-α, IL-6, IL-4, NGF, or of mu-, delta-, or kappa-opioid receptors. The treatment with DCF moderately reduced the antinociceptive efficacy of NFEPP, suggesting a correlation between an increase in local tissue pH and the decreased antinociceptive effect of this pH-sensitive opioid agonist.


Assuntos
Acidose , Analgésicos Opioides , Piperidinas , Acidose/induzido quimicamente , Acidose/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos Opioides/efeitos adversos , Animais , Concentração de Íons de Hidrogênio , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Piperidinas/farmacologia , Ratos , Receptores Opioides/metabolismo
4.
Metabolites ; 11(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34677413

RESUMO

Arachidonic acid 5-lipoxygenase (ALOX5) is the key enzyme in the biosynthesis of pro-inflammatory leukotrienes. We recently created knock-in mice (Alox5-KI) which express an arachidonic acid 15-lipoxygenating Alox5 mutant instead of the 5-lipoxygenating wildtype enzyme. These mice were leukotriene deficient but exhibited an elevated linoleic acid oxygenase activity. Here we characterized the polyenoic fatty acid metabolism of these mice in more detail and tested the animals in three different experimental inflammation models. In experimental autoimmune encephalomyelitis (EAE), Alox5-KI mice displayed an earlier disease onset and a significantly higher cumulative incidence rate than wildtype controls but the clinical score kinetics were not significantly different. In dextran sodium sulfate-induced colitis (DSS) and in the chronic constriction nerve injury model (CCI), Alox5-KI mice performed like wildtype controls with similar genetic background. These results were somewhat surprising since in previous loss-of-function studies targeting leukotriene biosynthesis (Alox5-/- mice, inhibitor studies), more severe inflammatory symptoms were observed in the EAE model but the degree of inflammation in DSS colitis was attenuated. Taken together, our data indicate that these mutant Alox5-KI mice respond differently in two models of experimental inflammation than Alox5-/- animals tested previously in similar experimental setups.

5.
J Neurosci ; 41(13): 2870-2882, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33593854

RESUMO

Interleukin-4 (IL-4) is an anti-inflammatory cytokine, which can be protective in inflammatory and neurologic disorders, and can alleviate pain. Classically, IL-4 diminishes pain by blocking the production of proinflammatory cytokines. Here, we uncovered that IL-4 induces acute antinociception by IL-4 receptor α (IL-4Rα)-dependent release of opioid peptides from M1 macrophages at injured nerves. As a model of pathologic pain, we used a chronic constriction injury (CCI) of the sciatic nerve in male mice. A single application of IL-4 at the injured nerves (14 d following CCI) attenuated mechanical hypersensitivity evaluated by von Frey filaments, which was reversed by co-injected antibody to IL-4Rα, antibodies to opioid peptides such as Met-enkephalin (ENK), ß-endorphin and dynorphin A 1-17, and selective antagonists of δ-opioid, µ-opioid, and κ-opioid receptors. Injured nerves were predominately infiltrated by proinflammatory M1 macrophages and IL-4 did not change their numbers or the phenotype, assessed by flow cytometry and qRT-PCR, respectively. Macrophages isolated from damaged nerves by immunomagnetic separation (IMS) and stimulated with IL-4 dose dependently secreted all three opioid peptides measured by immunoassays. The IL-4-induced release of ENK was diminished by IL-4Rα antibody, intracellular Ca2+ chelator, and inhibitors of protein kinase A (PKA), phosphoinositide 3-kinase (PI3K), and ryanodine receptors. Together, we identified a new opioid mechanism underlying the IL-4-induced antinociception that involves PKA-mediated, PI3K-mediated, ryanodine receptor-mediated, and intracellular Ca2+-mediated release from M1 macrophages of opioid peptides, which activate peripheral opioid receptors in injured tissue.SIGNIFICANCE STATEMENT Interleukin-4 (IL-4) is an anti-inflammatory cytokine, which can ameliorate pain. The IL-4-mediated effects are considered to mostly result from the inhibition of the production of proinflammatory mediators (e.g., IL-1ß, tumor necrosis factor, prostaglandin E2). Here, we found that IL-4 injected at the injured nerves attenuates pain by releasing opioid peptides from the infiltrating macrophages in mice. The opioids were secreted by IL-4 in the intracellular Ca2+-dependent manner and activated local peripheral opioid receptors. These actions represent a novel mode of IL-4 action, since its releasing properties have not been so far reported. Importantly, our findings suggest that the IL-4-opioid system should be targeted in the peripheral damaged tissue, since this can be devoid of central and systemic side effects.


Assuntos
Interleucina-4/farmacologia , Macrófagos/metabolismo , Neuralgia/metabolismo , Neuralgia/patologia , Peptídeos Opioides/metabolismo , Animais , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas de Entorpecentes/farmacologia , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Neuropatia Ciática/metabolismo , Neuropatia Ciática/patologia
6.
Methods Mol Biol ; 2201: 71-82, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32975790

RESUMO

Immunohistochemical staining is widely used to identify opioid receptors in specific cell types throughout the nervous system. Opioid receptors are not restricted to the central nervous system, but are also present in peripheral sensory neurons, where their activation exerts analgesic effects without inducing centrally mediated side effects. Here, we describe immunohistochemical analysis of µ-opioid receptors in the peripheral sensory neuron cell bodies, along the axons and their peripheral endings in the hind paw skin, as well as in the spinal cord, under naïve and sciatic nerve damage conditions in mice. Importantly, we consider the ongoing debate on the specificity of antibodies.


Assuntos
Imuno-Histoquímica/métodos , Nervos Periféricos/metabolismo , Receptores Opioides mu/imunologia , Analgésicos Opioides/metabolismo , Animais , Axônios/metabolismo , Gânglios Espinais/citologia , Humanos , Camundongos , Nervos Periféricos/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides/imunologia , Receptores Opioides/metabolismo , Receptores Opioides mu/metabolismo , Nervo Isquiático/citologia , Neuropatia Ciática , Células Receptoras Sensoriais/metabolismo , Medula Espinal/metabolismo
7.
Methods Mol Biol ; 2201: 83-95, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32975791

RESUMO

Real-time quantitative reverse transcription-PCR (qRT-PCR ) is a highly sensitive molecular biology method based on the amplification of the cDNA of mRNA to detect and quantify the levels of mRNA of interest. In this chapter, we describe real-time qRT-PCR to detect and quantify mRNA of opioid receptors in immune cells. Specifically, we analyze mouse immune cells isolated from the blood and sciatic nerves exposed to a chronic constriction injury, which represents a model of neuropathic pain. We describe in detail the requirements and techniques to induce the chronic constriction injury, to isolate immune cells from the blood and injured nerves, to isolate the total RNA from immune cells, to perform a cDNA reverse transcription from the total RNA, and to perform real-time qRT-PCR for µ-, δ-, and κ-opioid receptor mRNAs.


Assuntos
Reação em Cadeia da Polimerase em Tempo Real/métodos , Receptores Opioides mu/genética , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia , RNA Mensageiro/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides/genética , Receptores Opioides/imunologia , Receptores Opioides/metabolismo , Receptores Opioides delta/genética , Receptores Opioides kappa/genética , Receptores Opioides mu/imunologia , Receptores Opioides mu/metabolismo , Transcrição Reversa , Nervo Isquiático/lesões
8.
Methods Mol Biol ; 2201: 127-137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32975795

RESUMO

Patch clamp is an electrophysiological technique that allows to analyze the activity of ion channels in neurons. In this chapter, we provide a detailed description of patch clamp protocol to measure the effect of a µ-opioid receptor agonist on the activity of G protein-coupled inwardly rectifying potassium (GIRK or Kir3) channels. This is performed in peripheral sensory neurons isolated from dorsal root ganglia (DRG) of mice without or with a chronic constriction injury (CCI) of the sciatic nerve, which models neuropathic pain. We describe the induction of the CCI , isolation and culture of DRG neurons, performance of the patch clamp recordings, and identification of opioid-responding neurons.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/análise , Técnicas de Patch-Clamp/métodos , Células Receptoras Sensoriais/fisiologia , Animais , Modelos Animais de Doenças , Eletrofisiologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Gânglios Espinais/lesões , Gânglios Espinais/metabolismo , Hiperalgesia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia , Traumatismos dos Nervos Periféricos/metabolismo , Nervo Isquiático/lesões
9.
Sci Rep ; 10(1): 18599, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33122720

RESUMO

The newly designed fentanyl derivative [( ±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide] (NFEPP) was recently shown to produce analgesia selectively via peripheral mu-opioid receptors (MOR) at acidic pH in rat inflamed tissues. Here, we examined the pH-dependency of NFEPP binding to brain MOR and its effects on bone cancer-induced pain in mice. The IC50 of NFEPP to displace bound [3H]-DAMGO was significantly higher compared to fentanyl at pH 7.4, but no differences were observed at pH 5.5 or 6.5. Intravenous NFEPP (30-100 nmol/kg) or fentanyl (17-30 nmol/kg) inhibited heat hyperalgesia in mice inoculated with B16-F10 melanoma cells. The peripherally-restricted opioid receptor antagonist naloxone-methiodide reversed the effect of NFEPP (100 nmol/kg), but not of fentanyl (30 nmol/kg). The antihyperalgesic effect of NFEPP was abolished by a selective MOR- (cyprodime), but not delta- (naltrindole) or kappa- (nor-binaltorphimine) receptor antagonists. Ten-fold higher doses of NFEPP than fentanyl induced maximal antinociception in mice without tumors, which was reversed by the non-restricted antagonist naloxone, but not by naloxone-methiodide. NFEPP also reduced heat hyperalgesia produced by fibrosarcoma- (NCTC 2472) or prostate cancer-derived (RM1) cells. These data demonstrate the increased affinity of NFEPP for murine MOR at low pH, and its ability to inhibit bone cancer-induced hyperalgesia through peripheral MOR. In mice, central opioid receptors may be activated by ten-fold higher doses of NFEPP.


Assuntos
Analgésicos Opioides/farmacologia , Dor do Câncer/tratamento farmacológico , Piperidinas/farmacologia , Receptores Opioides mu/metabolismo , Animais , Neoplasias Ósseas/complicações , Neoplasias Ósseas/metabolismo , Dor do Câncer/metabolismo , Linhagem Celular Tumoral , Fentanila/farmacologia , Concentração de Íons de Hidrogênio , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Ligantes , Masculino , Melanoma Experimental/complicações , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Morfinanos/farmacologia , Naloxona/farmacologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia
10.
Immunol Lett ; 227: 48-59, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32814155

RESUMO

Pathological pain is regulated by a balance between pro-algesic and analgesic mechanisms. Interactions between opioid peptide-producing immune cells and peripheral sensory neurons expressing opioid receptors represent a powerful intrinsic pain control in animal models and in humans. Therefore, treatments based on general suppression of immune responses have been mostly unsuccessful. It is highly desirable to develop strategies that specifically promote neuro-immune communication mediated by opioids. Promising examples include vaccination-based recruitment of opioid-containing leukocytes to painful tissue and the local reprogramming of pro-algesic immune cells into analgesic cells producing and secreting high amounts of opioid peptides. Such approaches have the potential to inhibit pain at its origin and be devoid of central and systemic side effects of classical analgesics. In support of these concepts, in this article, we describe the functioning of peripheral opioid receptors, migration of opioid-producing immune cells to inflamed tissue, opioid peptide release, and the consequent pain relief. Conclusively, we provide clinical evidence and discuss therapeutic opportunities and challenges associated with immune cell-mediated peripheral opioid analgesia.


Assuntos
Analgesia/métodos , Analgésicos Opioides/imunologia , Imunidade Celular/fisiologia , Leucócitos/fisiologia , Dor/tratamento farmacológico , Receptores Opioides/metabolismo , Células Receptoras Sensoriais/fisiologia , Analgésicos Opioides/uso terapêutico , Animais , Humanos , Inflamação , Neuroimunomodulação , Manejo da Dor
11.
Pain ; 161(12): 2798-2804, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32639370

RESUMO

Currently, opioids targeting mu-opioid receptors are the most potent drugs for acute and cancer pain. However, opioids produce adverse side effects such as constipation, respiratory depression, or addiction potential. We recently developed (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP), a compound that does not evoke central or intestinal side effects due to its selective activation of mu-opioid receptors at low pH in peripheral injured tissues. Although we demonstrated that NFEPP effectively abolishes injury-induced pain, hyperalgesia, and allodynia in rodents, the efficacy of NFEPP in nonevoked ongoing pain remains to be established. Here, we examined reward, locomotor activity, and defecation in rats with complete Freund's adjuvant-induced paw inflammation to compare fentanyl's and NFEPP's potentials to induce side effects and to inhibit spontaneous pain. We demonstrate that low, but not higher, doses of NFEPP produce conditioned place preference but not constipation or motor disturbance, in contrast to fentanyl. Using a peripherally restricted antagonist, we provide evidence that NFEPP-induced place preference is mediated by peripheral opioid receptors. Our results indicate that a low dose of NFEPP produces reward by abolishing spontaneous inflammatory pain.


Assuntos
Analgésicos Opioides , Dor , Analgésicos Opioides/uso terapêutico , Animais , Concentração de Íons de Hidrogênio , Hiperalgesia/tratamento farmacológico , Dor/tratamento farmacológico , Ratos , Receptores Opioides , Receptores Opioides mu/genética
12.
Sci Rep ; 10(1): 4366, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32127599

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Front Immunol ; 11: 300, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194554

RESUMO

Opioid receptors comprise µ (MOP), δ (DOP), κ (KOP), and nociceptin/orphanin FQ (NOP) receptors. Opioids are agonists of MOP, DOP, and KOP receptors, whereas nociceptin/orphanin FQ (N/OFQ) is an agonist of NOP receptors. Activation of all four opioid receptors in neurons can induce analgesia in animal models, but the most clinically relevant are MOP receptor agonists (e.g., morphine, fentanyl). Opioids can also affect the function of immune cells, and their actions in relation to immunosuppression and infections have been widely discussed. Here, we analyze the expression and the role of opioid receptors in peripheral immune cells and glia in the modulation of pain. All four opioid receptors have been identified at the mRNA and protein levels in immune cells (lymphocytes, granulocytes, monocytes, macrophages) in humans, rhesus monkeys, rats or mice. Activation of leukocyte MOP, DOP, and KOP receptors was recently reported to attenuate pain after nerve injury in mice. This involved intracellular Ca2+-regulated release of opioid peptides from immune cells, which subsequently activated MOP, DOP, and KOP receptors on peripheral neurons. There is no evidence of pain modulation by leukocyte NOP receptors. More good quality studies are needed to verify the presence of DOP, KOP, and NOP receptors in native glia. Although still questioned, MOP receptors might be expressed in brain or spinal cord microglia and astrocytes in humans, mice, and rats. Morphine acting at spinal cord microglia is often reported to induce hyperalgesia in rodents. However, most studies used animals without pathological pain and/or unconventional paradigms (e.g., high or ultra-low doses, pain assessment after abrupt discontinuation of chronic morphine treatment). Therefore, the opioid-induced hyperalgesia can be viewed in the context of dependence/withdrawal rather than pain management, in line with clinical reports. There is convincing evidence of analgesic effects mediated by immune cell-derived opioid peptides in animal models and in humans. Together, MOP, DOP, and KOP receptors, and opioid peptides in immune cells can ameliorate pathological pain. The relevance of NOP receptors and N/OFQ in leukocytes, and of all opioid receptors, opioid peptides and N/OFQ in native glia for pain control is yet to be clarified.


Assuntos
Leucócitos/fisiologia , Macrófagos/fisiologia , Neuroglia/fisiologia , Dor/fisiopatologia , Receptores Opioides/fisiologia , Animais , Humanos , Receptor de Nociceptina
14.
JCI Insight ; 5(4)2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32102987

RESUMO

IL-4 is a pleiotropic antiinflammatory cytokine, which can be neuroprotective after nervous system injury. The beneficial actions of IL-4 are thought to result from the blunting of action of inflammatory mediators, such as proinflammatory cytokines. Here, we demonstrate that IL-4 induces M2 macrophages to continuously produce opioid peptides and ameliorate pain. IL-4 application at injured nerves in mice shifted F4/80+ macrophages from the proinflammatory M1 to the antiinflammatory M2 phenotype, which synthesized opioid peptides (Met-enkephalin, ß-endorphin, and dynorphin A 1-17). These effects were accompanied by a long-lasting attenuation of neuropathy-induced mechanical hypersensitivity, beyond the IL-4 treatment. This IL-4-induced analgesia was decreased by opioid peptide antibodies and opioid receptor (δ, µ, κ) antagonists applied at injured nerves, which confirms the involvement of the local opioid system. The participation of M2 macrophages was supported by analgesia in recipient mice injected at injured nerves with F4/80+ macrophages from IL-4-treated donors. Together, IL-4-induced M2 macrophages at injured nerves produced opioid peptides, which activated peripheral opioid receptors to diminish pain. Fostering the opioid-mediated actions of intrinsic M2 macrophages may be a strategy to tackle pathological pain.


Assuntos
Analgesia , Interleucina-4/farmacologia , Macrófagos/efeitos dos fármacos , Peptídeos Opioides/biossíntese , Animais , Temperatura Alta , Interleucina-4/uso terapêutico , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/tratamento farmacológico , Peptídeos Opioides/fisiologia , Tempo de Reação/efeitos dos fármacos , Receptores de Interleucina-4/antagonistas & inibidores , Receptores de Interleucina-4/fisiologia
15.
Sci Rep ; 9(1): 19344, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852967

RESUMO

The non-selective activation of central and peripheral opioid receptors is a major shortcoming of currently available opioids. Targeting peripheral opioid receptors is a promising strategy to preclude side effects. Recently, we showed that fentanyl-derived µ-opioid receptor (MOR) agonists with reduced acid dissociation constants (pKa) due to introducing single fluorine atoms produced injury-restricted antinociception in rat models of inflammatory, postoperative and neuropathic pain. Here, we report that a new double-fluorinated compound (FF6) and fentanyl show similar pKa, MOR affinity and [35S]-GTPγS binding at low and physiological pH values. In vivo, FF6 produced antinociception in injured and non-injured tissue, and induced sedation and constipation. The comparison of several fentanyl derivatives revealed a correlation between pKa values and pH-dependent MOR activation, antinociception and side effects. An opioid ligand's pKa value may be used as discriminating factor to design safer analgesics.


Assuntos
Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/síntese química , Analgésicos Opioides/química , Animais , Desenho de Fármacos , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Ligantes , Masculino , Nociceptividade/efeitos dos fármacos , Piperidinas/efeitos adversos , Piperidinas/síntese química , Piperidinas/química , Ratos Wistar , Receptores Opioides mu/metabolismo
16.
Front Pharmacol ; 9: 1388, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555325

RESUMO

Opioids are the most effective drugs for the treatment of severe pain, but they also cause addiction and overdose deaths, which have led to a worldwide opioid crisis. Therefore, the development of safer opioids is urgently needed. In this article, we provide a critical overview of emerging opioid-based strategies aimed at effective pain relief and improved side effect profiles. These approaches comprise biased agonism, the targeting of (i) opioid receptors in peripheral inflamed tissue (by reducing agonist access to the brain, the use of nanocarriers, or low pH-sensitive agonists); (ii) heteromers or multiple receptors (by monovalent, bivalent, and multifunctional ligands); (iii) receptor splice variants; and (iv) endogenous opioid peptides (by preventing their degradation or enhancing their production by gene transfer). Substantial advancements are underscored by pharmaceutical development of new opioids such as peripheral κ-receptor agonists, and by treatments augmenting the action of endogenous opioids, which have entered clinical trials. Additionally, there are several promising novel opioids comprehensively examined in preclinical studies, but also strategies such as biased agonism, which might require careful rethinking.

17.
Pain ; 159(11): 2277-2284, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29994988

RESUMO

Recently, (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP), a newly designed µ-opioid receptor (MOR) agonist with a low pKa, has been shown to produce injury-restricted analgesia in models of inflammatory and postoperative pain, without exhibiting typical opioid side effects. Here, we investigated MOR binding of NFEPP in brain and dorsal root ganglia, pH in injured tissues, and the analgesic efficacy of NFEPP compared with fentanyl in a chronic constriction injury model of neuropathic pain, and in the acetic acid-induced abdominal writhing assay in rats. Binding experiments revealed significantly lower affinity of NFEPP compared with fentanyl at pH 7.4. In vivo, pH significantly dropped both at injured nerves after chronic constriction injury and in the abdominal cavity after acetic acid administration. Intravenous NFEPP as well as fentanyl dose-dependently diminished neuropathy-induced mechanical and heat hypersensitivity, and acetic acid-induced abdominal constrictions. In both models, NFEPP-induced analgesia was fully reversed by naloxone methiodide, a peripherally restricted opioid receptor antagonist, injected at the nerve injury site or into the abdominal cavity. Our results indicate that NFEPP exerts peripheral opioid receptor-mediated analgesia exclusively in damaged tissue in models of neuropathic and abdominal pain.


Assuntos
Dor Abdominal/tratamento farmacológico , Neuralgia/tratamento farmacológico , Piperidinas/uso terapêutico , Receptores Opioides mu/agonistas , Animais , Encéfalo/citologia , Membrana Celular/efeitos dos fármacos , Modelos Animais de Doenças , Gânglios Espinais/citologia , Concentração de Íons de Hidrogênio , Hiperalgesia/tratamento farmacológico , Masculino , Medição da Dor/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores Opioides mu/metabolismo , Estatísticas não Paramétricas
18.
Sci Rep ; 8(1): 8965, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895890

RESUMO

Novel pain killers without adverse effects are urgently needed. Opioids induce central and intestinal side effects such as respiratory depression, sedation, addiction, and constipation. We have recently shown that a newly designed agonist with a reduced acid dissociation constant (pKa) abolished pain by selectively activating peripheral µ-opioid receptors (MOR) in inflamed (acidic) tissues without eliciting side effects. Here, we extended this concept in that pKa reduction to 7.22 was achieved by placing a fluorine atom at the ethylidene bridge in the parental molecule fentanyl. The new compound (FF3) showed pH-sensitive MOR affinity, [35S]-GTPγS binding, and G protein dissociation by fluorescence resonance energy transfer. It produced injury-restricted analgesia in rat models of inflammatory, postoperative, abdominal, and neuropathic pain. At high dosages, FF3 induced sedation, motor disturbance, reward, constipation, and respiratory depression. These results support our hypothesis that a ligand's pKa should be close to the pH of injured tissue to obtain analgesia without side effects.


Assuntos
Analgésicos , Desenho de Fármacos , Neuralgia/tratamento farmacológico , Dor Pós-Operatória/tratamento farmacológico , Receptores Opioides mu/agonistas , Analgésicos/síntese química , Analgésicos/química , Analgésicos/farmacologia , Animais , Relação Dose-Resposta a Droga , Concentração de Íons de Hidrogênio , Masculino , Estrutura Molecular , Muramidase , Neuralgia/genética , Neuralgia/metabolismo , Neuralgia/patologia , Dor Pós-Operatória/genética , Dor Pós-Operatória/metabolismo , Dor Pós-Operatória/patologia , Fragmentos de Peptídeos , Ratos , Ratos Wistar , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo
19.
Front Pharmacol ; 9: 1478, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618766

RESUMO

Neuropathic pain often arises from damage to peripheral nerves and is difficult to treat. Activation of opioid receptors in peripheral sensory neurons is devoid of respiratory depression, sedation, nausea, and addiction mediated in the brain, and ameliorates neuropathic pain in animal models. Mechanisms of peripheral opioid analgesia have therefore gained interest, but the role of G protein-coupled inwardly rectifying potassium (Kir3) channels, important regulators of neuronal excitability, remains unclear. Whereas functional Kir3 channels have been detected in dorsal root ganglion (DRG) neurons in rats, some studies question their contribution to opioid analgesia in inflammatory pain models in mice. However, neuropathic pain can be diminished by activation of peripheral opioid receptors in mouse models. Therefore, here we investigated effects of the selective µ-opioid receptor (MOR) agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) on potassium conductance in DRG neurons upon a chronic constriction injury (CCI) of the sciatic nerve in mice. For verification, we also tested human embryonic kidney (HEK) 293 cells transfected with MOR and Kir3.2. Using patch clamp, we recorded currents at -80 mV and applied voltage ramps in high extracellular potassium concentrations, which are a highly sensitive measures of Kir3 channel activity. We found a significantly higher rate of HEK cells responding with potassium channel blocker barium-sensitive inward current (233 ± 51 pA) to DAMGO application in transfected than in untransfected group, which confirms successful recordings of inward currents through Kir3.2 channels. Interestingly, DAMGO induced similar inward currents (178 ± 36-207 ± 56 pA) in 15-20% of recorded DRG neurons from naïve mice and in 4-27% of DRG neurons from mice exposed to CCI, measured in voltage clamp or voltage ramp modes. DAMGO-induced currents in naïve and CCI groups were reversed by barium and a more selective Kir3 channel blocker tertiapin-Q. These data indicate the coupling of Kir3 channels with MOR in mouse peripheral sensory neuron cell bodies, which was unchanged after CCI. A comparative analysis of opioid-induced potassium conductance at the axonal injury site and peripheral terminals of DRG neurons could clarify the role of Kir3 channel-MOR interactions in peripheral nerve injury and opioid analgesia.

20.
Elife ; 62017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28673386

RESUMO

Novel painkillers are urgently needed. The activation of opioid receptors in peripheral inflamed tissue can reduce pain without central adverse effects such as sedation, apnoea, or addiction. Here, we use an unprecedented strategy and report the synthesis and analgesic efficacy of the standard opioid morphine covalently attached to hyperbranched polyglycerol (PG-M) by a cleavable linker. With its high-molecular weight and hydrophilicity, this conjugate is designed to selectively release morphine in injured tissue and to prevent blood-brain barrier permeation. In contrast to conventional morphine, intravenous PG-M exclusively activated peripheral opioid receptors to produce analgesia in inflamed rat paws without major side effects such as sedation or constipation. Concentrations of morphine in the brain, blood, paw tissue, and in vitro confirmed the selective release of morphine in the inflamed milieu. Thus, PG-M may serve as prototype of a peripherally restricted opioid formulation designed to forego central and intestinal side effects.


Assuntos
Analgesia/métodos , Analgésicos/farmacologia , Analgésicos/farmacocinética , Glicerol/farmacologia , Glicerol/farmacocinética , Morfina/farmacologia , Morfina/farmacocinética , Polímeros/farmacologia , Polímeros/farmacocinética , Analgésicos/química , Estruturas Animais/química , Animais , Glicerol/química , Interações Hidrofóbicas e Hidrofílicas , Peso Molecular , Morfina/química , Polímeros/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...