Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Fungal Biol ; 3: 1081179, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37746209

RESUMO

KK-1, a cyclic depsipeptide with 10 residues produced by a filamentous fungus Curvularia clavata BAUA-2787, is a promising pesticide active compound with high activity against many plant pathogens, especially Botrytis cinerea. As a first step toward the future mass production of KK-1 through synthetic biological approaches, we aimed to identify the genes responsible for the KK-1 biosynthesis. To achieve this, we conducted whole genome sequencing and transcriptome analysis of C. clavata BAUA-2787 to predict the KK-1 biosynthetic gene cluster. We then generated the overexpression and deletion mutants for each cluster gene using our originally developed transformation system for this fungus, and analyzed the KK-1 production and the cluster gene expression levels to confirm their involvement in KK-1 biosynthesis. As a result of these, a region of approximately 71 kb was found, containing 10 open reading frames, which were co-induced during KK-1 production, as a biosynthetic gene cluster. These include kk1B, which encodes nonribosomal peptide synthetase with a domain structure that is consistent with the structural features of KK-1, and kk1F, which encodes a transcription factor. The overexpression of kk1F increased the expression of the entire cluster genes and, consequently, improved KK-1 production, whereas its deletion decreased the expression of the entire cluster genes and almost eliminated KK-1 production, demonstrating that the protein encoded by kk1F regulates the expressions of the other nine cluster genes cooperatively as the pathway-specific transcription factor. Furthermore, the deletion of each cluster gene caused a reduction in KK-1 productivity, indicating that each gene is involved in KK-1 production. The genes kk1A, kk1D, kk1H, and kk1I, which showed a significant decrease in KK-1 productivity due to deletion, were presumed to be directly involved in KK-1 structure formation, including the biosynthesis of the constituent residues. kk1C, kk1E, kk1G, and kk1J, which maintained a certain level of KK-1 productivity despite deletion, were possibly involved in promoting or assisting KK-1 production, such as extracellular transportation and the removal of aberrant units incorporated into the peptide chain.

2.
Nat Commun ; 11(1): 1106, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107379

RESUMO

Section Flavi encompasses both harmful and beneficial Aspergillus species, such as Aspergillus oryzae, used in food fermentation and enzyme production, and Aspergillus flavus, food spoiler and mycotoxin producer. Here, we sequence 19 genomes spanning section Flavi and compare 31 fungal genomes including 23 Flavi species. We reassess their phylogenetic relationships and show that the closest relative of A. oryzae is not A. flavus, but A. minisclerotigenes or A. aflatoxiformans and identify high genome diversity, especially in sub-telomeric regions. We predict abundant CAZymes (598 per species) and prolific secondary metabolite gene clusters (73 per species) in section Flavi. However, the observed phenotypes (growth characteristics, polysaccharide degradation) do not necessarily correlate with inferences made from the predicted CAZyme content. Our work, including genomic analyses, phenotypic assays, and identification of secondary metabolites, highlights the genetic and metabolic diversity within section Flavi.


Assuntos
Aspergillus flavus/genética , Aspergillus oryzae/genética , Genoma Fúngico/genética , Genômica , Aspergillus flavus/classificação , Aspergillus flavus/enzimologia , Aspergillus oryzae/classificação , Aspergillus oryzae/enzimologia , Reatores Biológicos , Metabolismo dos Carboidratos/genética , Produtos Agrícolas/microbiologia , DNA Fúngico/genética , Fermentação , Alimentos Fermentados , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Redes e Vias Metabólicas/genética , Família Multigênica , Fenótipo , Filogenia , Doenças das Plantas/prevenção & controle , Metabolismo Secundário/genética
3.
BMC Biotechnol ; 19(1): 70, 2019 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-31655589

RESUMO

BACKGROUND: Aspergillus oryzae, a useful industrial filamentous fungus, produces limited varieties of secondary metabolites, such as kojic acid. Thus, for the production of valuable secondary metabolites by genetic engineering, the species is considered a clean host, enabling easy purification from cultured cells. A. oryzae has been evaluated for secondary metabolite production utilizing strong constitutive promoters of genes responsible for primary metabolism. However, secondary metabolites are typically produced by residual nutrition after microbial cells grow to the stationary phase and primary metabolism slows. We focused on a promoter of the secondary metabolism gene kojA, a component of the kojic acid biosynthetic gene cluster, for the production of other secondary metabolites by A. oryzae. RESULTS: A kojA disruptant that does not produce kojic acid was utilized as a host strain for production. Using this host strain, a mutant that expressed a polyketide synthase gene involved in polyketide secondary metabolite production under the kojA gene promoter was constructed. Then, polyketide production and polyketide synthase gene expression were observed every 24 h in liquid culture. From days 0 to 10 of culture, the polyketide was continuously produced, and the synthase gene expression was maintained. Therefore, the kojA promoter was activated, and it enabled the continuous production of polyketide for 10 days. CONCLUSIONS: The combined use of the kojA gene promoter and a kojA disruptant proved useful for the continuous production of a polyketide secondary metabolite in A. oryzae. These findings suggest that this combination can be applied to other secondary metabolites for long-term production.


Assuntos
Aspergillus oryzae/genética , Proteínas Fúngicas/genética , Policetídeos/metabolismo , Regiões Promotoras Genéticas/genética
4.
Biosci Biotechnol Biochem ; 83(6): 1163-1170, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30821612

RESUMO

In order to increase secondary metabolite production in filamentous fungi, a transcription factor gene in the biosynthetic gene cluster and global regulator genes such as laeA are considered plausible as targets for overexpression by genetic modification. In this study, we examined these overexpression effect in fungal sp. No. 14919 that produces FR901512, an HMG-CoA reductase inhibitor. Resultantly, the productivity was improved at 1.7-1.8 fold by overexpressing frlE, a transcription factor gene in the biosynthetic gene cluster, whereas productivity did not change by overexpression of laeA and veA. Furthermore, we searched for extra transcription factors affecting the productivity by transcriptome analysis between wild-type strain and highly productive UV mutants. After verifying productivity decrease by overexpression, Drf1, a novel transcription factor encoded by drf1 was identified as the negative regulator. Because each frlE product (FrlE) and Drf1 worked on the same cluster in positive and negative regulatory manners, their network was analyzed.


Assuntos
Fungos/metabolismo , Genes Fúngicos , Família Multigênica , Policetídeos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fungos/genética , Análise de Sequência de RNA
5.
J Biosci Bioeng ; 127(4): 451-457, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30327168

RESUMO

Free dihomo-γ-linolenic acid (DGLA) and its desaturated form, free arachidonic acid (ARA) are polyunsaturated free fatty acids (FFAs). They are useful raw materials to produce eicosanoid pharmaceuticals. In this study, we aimed at their production by the oleaginous filamentous fungus Aspergillus oryzae via metabolic engineering. Three genes encoding enzymes involved in the synthesis of DGLA and ARA, were isolated from the filamentous fungus Mortierella alpina that produces ARA in a triacylglycerol form. These genes were concatenated to promoters and terminators of highly expressed genes of A. oryzae, and the concatenated DNA fragments were further concatenated with each other to generate a single DNA fragment in the form of a biosynthetic gene cluster. By homologous recombination, the resulting DNA fragment was integrated to the chromosome of the A. oryzae acyl-CoA synthetase gene disruptant whose FFA productivity was enhanced at 9.2-fold more than the wild-type strain. The DNA-integrated disruptant produced free DGLA but did not produce free ARA. Thus, focusing on free DGLA, after removal of the gene for converting DGLA to ARA, the constructed strain produced free DGLA at 145 mg/l for 5 d. Also, by supplementing Triton X-100 surfactant at 1% to the culture, over 80% of free DGLA was released from cells without inhibiting the growth. Consequently, the constructed strain will be useful for attempting production of free DGLA-derived eicosanoids because it bypasses excision of free DGLA from triacylglycerols by lipase. To our knowledge, this is the first report on microbial production of free DGLA and its extracellular release.


Assuntos
Ácido 8,11,14-Eicosatrienoico/metabolismo , Aspergillus oryzae , Via Secretória/efeitos dos fármacos , Tensoativos/farmacologia , Ácido Araquidônico/metabolismo , Aspergillus oryzae/efeitos dos fármacos , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Espaço Extracelular , Ácidos Graxos Insaturados/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Engenharia Metabólica/métodos , Mortierella/enzimologia , Mortierella/genética , Octoxinol/farmacologia , Organismos Geneticamente Modificados , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Via Secretória/genética
6.
ACS Synth Biol ; 7(12): 2783-2789, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30403849

RESUMO

For many secondary metabolites, heterologous synthesis is the definitive step to determine their required biosynthetic genes. Using a multivector expression system in Saccharomyces cerevisiae, we reconstituted not only two natural statins from two fungal species, i.e., lovastatin from Aspergillus terreus and FR901512 from Xylaria grammica, but also new statin structures by mixing their genes. Combinatorial gene exchange experiments revealed the functional promiscuity of two polyketide synthases in A. terreus, lovB, and lovF; they could synthesize FR901512 with Xylaria genes. Key structure determinants of statins are essential accessory genes that are irreplaceable across species.


Assuntos
Aspergillus/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Xylariales/genética , Cromatografia Líquida de Alta Pressão , Inibidores de Hidroximetilglutaril-CoA Redutases/análise , Lovastatina/análise , Lovastatina/biossíntese , Espectrometria de Massas , Plasmídeos/genética , Plasmídeos/metabolismo , Policetídeo Sintases/genética
7.
Front Microbiol ; 9: 690, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686660

RESUMO

A novel cyclic peptide compound, KK-1, was originally isolated from the plant-pathogenic fungus Curvularia clavata. It consists of 10 amino acid residues, including five N-methylated amino acid residues, and has potent antifungal activity. Recently, the genome-sequencing analysis of C. clavata was completed, and the biosynthetic genes involved in KK-1 production were predicted by using a novel gene cluster mining tool, MIDDAS-M. These genes form an approximately 75-kb cluster, which includes nine open reading frames, containing a non-ribosomal peptide synthetase (NRPS) gene. To determine whether the predicted genes were responsible for the biosynthesis of KK-1, we performed heterologous production of KK-1 in Aspergillus oryzae by introduction of the cluster genes into the genome of A. oryzae. The NRPS gene was split in two fragments and then reconstructed in the A. oryzae genome, because the gene was quite large (approximately 40 kb). The remaining seven genes in the cluster, excluding the regulatory gene kkR, were simultaneously introduced into the strain of A. oryzae in which NRPS had already been incorporated. To evaluate the heterologous production of KK-1 in A. oryzae, gene expression was analyzed by RT-PCR and KK-1 productivity was quantified by HPLC. KK-1 was produced in variable quantities by a number of transformed strains, along with expression of the cluster genes. The amount of KK-1 produced by the strain with the greatest expression of all genes was lower than that produced by the original producer, C. clavata. Therefore, expression of the cluster genes is necessary and sufficient for the heterologous production of KK-1 in A. oryzae, although there may be unknown factors limiting productivity in this species.

8.
Appl Microbiol Biotechnol ; 102(3): 1393-1405, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29270733

RESUMO

In the production of useful microbial secondary metabolites, the breeding of strains is generally performed by random mutagenesis. However, because random mutagenesis introduces many mutations into genomic DNA, the causative mutations leading to increased productivity are mostly unknown. Therefore, although gene targeting is more efficient for breeding than random mutagenesis, it is difficult to apply. In this study, a wild-type strain and randomly mutagenized strains of fungal sp. No. 14919, a filamentous fungus producing the HMG-CoA reductase inhibitor polyketide FR901512, were subjected to point mutation analysis based on whole genome sequencing. Among the mutated genes found, mutation of the sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) had a positive effect on increasing FR901512 productivity. By complementing the SCAP gene in the SCAP-mutated strain, productivity was decreased to the level of the SCAP-intact strain. Conversely, when either the SCAP or SREBP gene was deleted, the productivity was significantly increased. By genomic transcriptional analysis, the expression levels of three enzymes in the ergosterol biosynthesis pathway were shown to be decreased by SCAP mutation. These findings led to the hypothesis that raw materials of polyketides, such as acetyl-CoA and malonyl-CoA, became more available for FR901512 biosynthesis due to depression in sterol biosynthesis caused by knockout of the SREBP system. This mechanism was confirmed in Aspergillus terreus producing the polyketide lovastatin, which is structurally similar to FR901512. Thus, knockout of the SREBP system should be considered significant for increasing the productivities of polyketides, such as HMG-CoA reductase inhibitors, by filamentous fungi.


Assuntos
Aspergillus/metabolismo , Fungos/metabolismo , Técnicas de Inativação de Genes , Lovastatina/biossíntese , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Tetra-Hidronaftalenos/metabolismo , Aspergillus/genética , Proteínas de Ligação a DNA/genética , Fungos/genética , Proteínas de Membrana/genética , Mutagênese , Mutação Puntual , Policetídeo Sintases/metabolismo , Sequências Reguladoras de Ácido Nucleico , Metabolismo Secundário , Fatores de Transcrição/genética , Sequenciamento Completo do Genoma
9.
Genome Announc ; 5(14)2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28385847

RESUMO

Fungal strain 14919 was originally isolated from a soil sample collected at Mt. Kiyosumi, Chiba Prefecture, Japan. It produces FR901512, a potent and strong 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor. The genome sequence of fungal strain 14919 was determined and annotated to improve the productivity of FR901512.

10.
J Biosci Bioeng ; 124(1): 8-14, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28341398

RESUMO

FR901469 is a secondary metabolite with antifungal activity, produced by fungal sp. No. 11243. In our previous study, we constructed the frbF overexpression mutant (TFH2-2) from the wild-type strain. FR901469 productivity of TFH2-2 was 3.4 times higher than that of the wild-type strain. To further enhance FR901469 productivity in TFH2-2, we attempted to find genes from the genome that limited the productivity as bottlenecks in this study. Based on both correlation analysis of gene expression level against FR901469 productivity and genome annotation information, the cross-pathway control gene A (cpcA) was most predicted as the bottleneck. The cpcA and frbF co-overexpression mutant named TFCH3 was then constructed from TFH2-2. As a result, FR901469 productivity of TFCH3 was enhanced at 1.8 times higher than that of TFH2-2. Transcriptome analysis revealed that many genes involved in amino acid biosynthesis and encoding tRNA ligases were significantly upregulated in TFCH3, which implied increase of amino acids as the substrates of FR901469 would be a reason of further productivity enhancement.


Assuntos
Antifúngicos/metabolismo , Depsipeptídeos/biossíntese , Fungos/genética , Genes Fúngicos/genética , Engenharia Genética/métodos , Expressão Gênica , Mutação
11.
J Biotechnol ; 248: 9-14, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28300661

RESUMO

Free fatty acids (FFAs) are useful for generating biofuel compounds and functional lipids. Microbes are increasingly exploited to produce FFAs via metabolic engineering. However, in many microorganisms, FFAs accumulate in the cytosol, and disrupting cells to extract them is energy intensive. Thus, a simple cost-effective extraction technique must be developed to remove this drawback. We found that FFAs were released from cells of the filamentous fungus Aspergillus oryzae with high efficiency when they were cultured or incubated with non-ionic surfactants such as Triton X-100. The surfactants did not reduce hyphal growth, even at 5% (w/v). When the faaA disruptant was cultured with 1% Triton X-100, more than 80% of the FFAs synthesized de novo were released. When the disruptant cells grown without surfactants were incubated for 1h in 1% Triton X-100 solution, more than 50% of the FFAs synthesized de novo were also released. Other non-ionic surfactants in the same ether series, such as Brij 58, IGEPAL CA-630, and Tergitol NP-40, elicited a similar FFA release. The dry cell weight of total hyphae decreased when grown with 1% Triton X-100. The decrement was 4.9-fold greater than the weight of the released FFAs, implying release of other intracellular compounds. Analysis of the culture supernatant showed that intracellular lactate dehydrogenase was also released, suggesting that FFAs are not released by a specific transporter. Therefore, ether-type non-ionic surfactants probably cause non-specific release of FFAs and other intracellular compounds by increasing cell membrane permeability.


Assuntos
Aspergillus oryzae , Ácidos Graxos não Esterificados , Tensoativos/química , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Aspergillus oryzae/citologia , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Permeabilidade da Membrana Celular , Cromatografia em Camada Fina , Espaço Extracelular/metabolismo , Ácidos Graxos não Esterificados/análise , Ácidos Graxos não Esterificados/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Octoxinol
12.
J Biosci Bioeng ; 123(2): 147-153, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27660098

RESUMO

FR901469 is an antifungal antibiotic produced by fungal sp. No. 11243. Here, we searched for FR901469 biosynthesis genes in the genome of No. 11243. Based on the molecular structure of FR901469 and endogenous functional motifs predicted in each genomic NRPS gene, a putative FR901469 biosynthesis gene cluster harboring the most plausible NRPS gene was identified. A transcription factor gene, designated frbF, was found in the cluster. To improve FR901469 productivity, we constructed a strain in which frbF was overexpressed and named it TFH2-2. FR901469 productivity of TFH2-2 was 3.4 times higher than that of the wild-type strain. Transcriptome analysis revealed that most of the genes in the putative FR901469 biosynthesis gene cluster were upregulated in TFH2-2. It also showed that the expression of genes related to ergosterol biosynthesis, ß-1,3-glucan catabolism, and chitin synthesis was inclined to exhibit significant differences in TFH2-2.


Assuntos
Depsipeptídeos/biossíntese , Regulação Fúngica da Expressão Gênica , Redes e Vias Metabólicas/genética , Família Multigênica , Fatores de Transcrição/genética , Sequência de Aminoácidos , Antifúngicos/metabolismo , Clonagem Molecular , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Regulação para Cima/genética
13.
DNA Res ; 23(6): 507-515, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27651094

RESUMO

Awamori is a traditional distilled beverage made from steamed Thai-Indica rice in Okinawa, Japan. For brewing the liquor, two microbes, local kuro (black) koji mold Aspergillus luchuensis and awamori yeast Saccharomyces cerevisiae are involved. In contrast, that yeasts are used for ethanol fermentation throughout the world, a characteristic of Japanese fermentation industries is the use of Aspergillus molds as a source of enzymes for the maceration and saccharification of raw materials. Here we report the draft genome of a kuro (black) koji mold, A. luchuensis NBRC 4314 (RIB 2604). The total length of nonredundant sequences was nearly 34.7 Mb, comprising approximately 2,300 contigs with 16 telomere-like sequences. In total, 11,691 genes were predicted to encode proteins. Most of the housekeeping genes, such as transcription factors and N-and O-glycosylation system, were conserved with respect to Aspergillus niger and Aspergillus oryzae An alternative oxidase and acid-stable α-amylase regarding citric acid production and fermentation at a low pH as well as a unique glutamic peptidase were also found in the genome. Furthermore, key biosynthetic gene clusters of ochratoxin A and fumonisin B were absent when compared with A. niger genome, showing the safety of A. luchuensis for food and beverage production. This genome information will facilitate not only comparative genomics with industrial kuro-koji molds, but also molecular breeding of the molds in improvements of awamori fermentation.


Assuntos
Aspergillus/genética , Genoma Fúngico , DNA Fúngico/química , DNA Fúngico/genética , Anotação de Sequência Molecular , Análise de Sequência de DNA
14.
Angew Chem Int Ed Engl ; 55(28): 8072-5, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27166860

RESUMO

The biosynthetic machinery of the first fungal ribosomally synthesized and post-translationally modified peptide (RiPP) ustiloxin B was elucidated through a series of gene inactivation and heterologous expression studies. The results confirmed an essential requirement for novel oxidases possessing the DUF3328 motif for macrocyclization, and highly unique side-chain modifications by three oxidases (UstCF1F2) and a pyridoxal 5'-phosphate (PLP)-dependent enzyme (UstD). These findings provide new insight into the expression of the RiPP gene clusters found in various fungi.


Assuntos
Vias Biossintéticas , Fungos/metabolismo , Peptídeos Cíclicos/metabolismo , Fungos/enzimologia , Fungos/genética , Família Multigênica , Oxirredutases/genética , Oxirredutases/metabolismo , Peptídeos Cíclicos/genética , Processamento de Proteína Pós-Traducional , Ribossomos/genética , Ribossomos/metabolismo
15.
Genome Announc ; 4(3)2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27151791

RESUMO

Ustilaginoidea virens is a rice pathogenic fungus that causes false smut disease, a disease that seriously damages the yield and quality of the grain. Analysis of the U. virens IPU010 33.6-Mb genome sequence will aid in the understanding of the pathogenicity of the strain, particularly in regard to effector proteins and secondary metabolic genes.

16.
AMB Express ; 6(1): 9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26842395

RESUMO

Ustiloxin B, originally isolated from the fungus Ustilaginoidea virens, is a known inhibitor of microtubule assembly. Ustiloxin B is also produced by Aspergillus flavus and is synthesized through the ribosomal peptide synthesis pathway. In A. flavus, the gene cluster associated with ustiloxin B production contains 15 genes including those encoding a fungal C6-type transcription factor and ustiloxin B precursor. Although the koji mold Aspergillus oryzae, which is genetically close to A. flavus, has the corresponding gene cluster, it does not produce ustiloxin B, which may be explained by the fact that the gene encoding the transcription factor UstR is not expressed. Here, to investigate whether ustiloxin B can be produced by expressing ustR in A. oryzae, we constructed ustR expression (ustR (EX)) strains and analyzed ustiloxin B production. In the ustR (EX) strains, all genes in the cluster were up-regulated, in line with expression of ustR, and ustiloxin B produced. To elucidate whether the KexB protease is involved in the processing of the ustiloxin B precursor protein UstA, which has repeats of basic amino acid doublets resembling KexB target sites, we also constructed a ustR (EX) strain with the ∆kexB genotype. Although ustR was expressed in this strain, ustiloxin B was barely detectable. This finding strongly suggests that KexB is required for ustiloxin B production.

17.
Fungal Genet Biol ; 86: 58-70, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26703898

RESUMO

Ustiloxins were found recently to be the first example of cyclic peptidyl secondary metabolites that are ribosomally synthesized in filamentous fungi. In this work, two function-unknown genes (ustYa/ustYb) in the gene cluster for ustiloxins from Aspergillus flavus were found experimentally to be involved in cyclization of the peptide. Their homologous genes are observed mainly in filamentous fungi and mushrooms. They have two "HXXHC" motifs that might form active sites. Computational genome analyses showed that these genes are frequently located near candidate genes for ribosomal peptide precursors, which have signal peptides at the N-termini and repeated sequences with core peptides for the cyclic portions, in the genomes of filamentous fungi, particularly Aspergilli, as observed in the ustiloxin gene cluster. Based on the combination of the ustYa/ustYb homologous genes and the nearby ribosomal peptide precursor candidate genes, 94 ribosomal peptide precursor candidates that were identified computationally from Aspergilli genome sequences were classified into more than 40 types including a wide variety of core peptide sequences. A set of the predicted ribosomal peptide biosynthetic genes was experimentally verified to synthesize a new cyclic peptide compound, designated as asperipin-2a, which comprises the amino acid sequence in the corresponding precursor gene, distinct from the ustiloxin precursors.


Assuntos
Aspergillus flavus/genética , Genes Fúngicos , Genes Sintéticos , Peptídeos Cíclicos/genética , Sequência de Aminoácidos , Genoma Fúngico , Dados de Sequência Molecular , Família Multigênica , Peptídeos Cíclicos/química , Ribossomos/metabolismo
18.
Front Microbiol ; 6: 371, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25999925

RESUMO

Secondary metabolites are produced mostly by clustered genes that are essential to their biosynthesis. The transcriptional expression of these genes is often cooperatively regulated by a transcription factor located inside or close to a cluster. Most of the secondary metabolism biosynthesis (SMB) gene clusters identified to date contain so-called core genes with distinctive sequence features, such as polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS). Recent efforts in sequencing fungal genomes have revealed far more SMB gene clusters than expected based on the number of core genes in the genomes. Several bioinformatics tools have been developed to survey SMB gene clusters using the sequence motif information of the core genes, including SMURF and antiSMASH. More recently, accompanied by the development of sequencing techniques allowing to obtain large-scale genomic and transcriptomic data, motif-independent prediction methods of SMB gene clusters, including MIDDAS-M, have been developed. Most these methods detect the clusters in which the genes are cooperatively regulated at transcriptional levels, thus allowing the identification of novel SMB gene clusters regardless of the presence of the core genes. Another type of the method, MIPS-CG, uses the characteristics of SMB genes, which are highly enriched in non-syntenic blocks (NSBs), enabling the prediction even without transcriptome data although the results have not been evaluated in detail. Considering that large portion of SMB gene clusters might be sufficiently expressed only in limited uncommon conditions, it seems that prediction of SMB gene clusters by bioinformatics and successive experimental validation is an only way to efficiently uncover hidden SMB gene clusters. Here, we describe and discuss possible novel approaches for the determination of SMB gene clusters that have not been identified using conventional methods.

19.
PLoS One ; 10(4): e0126289, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25919614

RESUMO

A hybrid de novo assembly pipeline was constructed to utilize both MiSeq and SOLiD short read data in combination in the assembly. The short read data were converted to a standard format of the pipeline, and were supplied to the pipeline components such as ABySS and SOAPdenovo. The assembly pipeline proceeded through several stages, and either MiSeq paired-end data, SOLiD mate-paired data, or both of them could be specified as input data at each stage separately. The pipeline was examined on the filamentous fungus Aspergillus oryzae RIB40, by aligning the assembly results against the reference sequences. Using both the MiSeq and the SOLiD data in the hybrid assembly, the alignment length was improved by a factor of 3 to 8, compared with the assemblies using either one of the data types. The number of the reproduced gene cluster regions encoding secondary metabolite biosyntheses (SMB) was also improved by the hybrid assemblies. These results imply that the MiSeq data with long read length are essential to construct accurate nucleotide sequences, while the SOLiD mate-paired reads with long insertion length enhance long-range arrangements of the sequences. The pipeline was also tested on the actinomycete Streptomyces avermitilis MA-4680, whose gene is known to have high-GC content. Although the quality of the SOLiD reads was too low to perform any meaningful assemblies by themselves, the alignment length to the reference was improved by a factor of 2, compared with the assembly using only the MiSeq data.


Assuntos
Aspergillus oryzae/genética , Genoma Bacteriano , Genoma Fúngico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Streptomyces/genética , Sequência de Bases , Dados de Sequência Molecular , Família Multigênica , Fases de Leitura Aberta/genética , Padrões de Referência , Reprodutibilidade dos Testes
20.
Genome Announc ; 3(2)2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25838475

RESUMO

Fungal species No.11243 was originally isolated from a decayed leaf sample collected in Kyoto, Japan. It produces FR901469, a 1,3-beta-glucan synthase inhibitor. The genome sequence of No.11243 was determined and annotated to obtain useful information for improving productivity of the effective antifungal agent FR901469.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...