Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37896084

RESUMO

Arabidopsis ASYMMETRIC LEAVES2 (AS2) plays a key role in the formation of flat symmetric leaves. AS2 represses the expression of the abaxial gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). AS2 interacts in vitro with the CGCCGC sequence in ETT/ARF3 exon 1. In cells of leaf primordia, AS2 localizes at peripheral regions of the nucleolus as two AS2 bodies, which are partially overlapped with chromocenters that contain condensed 45S ribosomal DNA repeats. AS2 contains the AS2/LOB domain, which consists of three sequences conserved in the AS2/LOB family: the zinc finger (ZF) motif, the ICG sequence including the conserved glycine residue, and the LZL motif. AS2 and the genes NUCLEOLIN1 (NUC1), RNA HELICASE10 (RH10), and ROOT INITIATION DEFECTIVE2 (RID2) that encode nucleolar proteins coordinately act as repressors against the expression of ETT/ARF3. Here, we examined the formation and patterning of AS2 bodies made from as2 mutants with amino acid substitutions in the ZF motif and the ICG sequence in cells of cotyledons and leaf primordia. Our results showed that the amino acid residues next to the cysteine residues in the ZF motif were essential for both the formation of AS2 bodies and the interaction with ETT/ARF3 DNA. The conserved glycine residue in the ICG sequence was required for the formation of AS2 bodies, but not for the DNA interaction. We also examined the effects of nuc1, rh10, and rid2 mutations, which alter the metabolism of rRNA intermediates and the morphology of the nucleolus, and showed that more than two AS2 bodies were observed in the nucleolus and at its periphery. These results suggested that the patterning of AS2 bodies is tightly linked to the morphology and functions of the nucleolus and the development of flat symmetric leaves in plants.

2.
J Plant Res ; 135(1): 3-14, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34668105

RESUMO

The ASYMMETRIC LEAVES2 (AS2) gene in Arabidopsis thaliana is responsible for the development of flat, symmetric, and extended leaf laminae and their vein systems. AS2 protein is a member of the plant-specific AS2/LOB protein family, which includes 42 members comprising the conserved amino-terminal domain referred to as the AS2/LOB domain, and the variable carboxyl-terminal region. Among the members, AS2 has been most intensively investigated on both genetic and molecular levels. AS2 forms a complex with the myb protein AS1, and is involved in epigenetic repression of the abaxial genes ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3), ARF4, and class 1 KNOX homeobox genes. The repressed expression of these genes by AS2 is markedly enhanced by the cooperative action of various modifier genes, some of which encode nucleolar proteins. Further downstream, progression of the cell division cycle in the developing organs is stimulated; meristematic states are suppressed in determinate leaf primordia; and the extension of leaf primordia is induced. AS2 binds the specific sequence in exon 1 of ETT/ARF3 and maintains methylated CpGs in several exons of ETT/ARF3. AS2 forms bodies (designated as AS2 bodies) at nucleolar peripheries. AS2 bodies partially overlap chromocenters, including inactive 45S ribosomal DNA repeats, suggesting the presence of molecular and functional links among AS2, the 45S rDNAs, and the nucleolus to exert the repressive regulation of ETT/ARF3. The AS2/LOB domain is characterized by three subdomains, the zinc finger (ZF) motif, the internally conserved-glycine containing (ICG) region, and the leucine-zipper-like (LZL) region. Each of these subdomains is essential for the formation of AS2 bodies. ICG to LZL are required for nuclear localization, but ZF is not. LZL intrinsically has the potential to be exported to the cytoplasm. In addition to its nuclear function, it has been reported that AS2 plays a positive role in geminivirus infection: its protein BV1 stimulates the expression of AS2 and recruits AS2 to the cytoplasm, which enhances virus infectivity by suppression of cytoplasmic post transcriptional gene silencing.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Regulação da Expressão Gênica de Plantas , Mutação , Desenvolvimento Vegetal , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Plant Biotechnol (Tokyo) ; 38(2): 269-275, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34393606

RESUMO

MYB3R family transcription factors play a central role in the regulation of G2/M-specific gene transcription in Arabidopsis thaliana. Among the members of this family, MYB3R3 and MYB3R5 are structurally closely related and are involved in the transcriptional repression of target genes in both proliferating and quiescent cells. This type of MYB3R repressor is widespread in plants; however, apart from the studies on MYB3Rs in Arabidopsis thaliana, little information about them is available. Here we isolated tobacco cDNA clones encoding two closely related MYB3R proteins designated as NtmybC1 and NtmybC2 and determined the nucleotide sequences of the entire coding regions. Phylogenetic analysis suggested that NtmybC1 and NtmybC2 can be grouped into a conserved subfamily of plant MYB3Rs that also contains MYB3R3 and MYB3R5. When transiently expressed in protoplasts prepared from tobacco BY-2 cells, NtmybC1 and NtmybC2 repressed the activity of target promoters and blocked promoter activation mediated by NtmybA2, a MYB3R activator from tobacco. Unlike MYB3R3 and MYB3R5, NtmybC1 and NtmybC2 showed cell cycle-regulated transcript accumulation. In synchronized cultures of BY-2 cells, mRNAs for both NtmybC1 and NtmybC2 were preferentially expressed during the G2 and M phases, coinciding with the expression of NtmybA2 and G2/M-specific target genes. These results not only broadly confirm our fundamental view that this type of MYB3R protein acts as transcriptional repressor of G2/M-specific genes but also suggest a possible divergence of MYB3R repressors in terms of the mechanisms of their action and regulation.

4.
Int J Mol Sci ; 21(19)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33022996

RESUMO

Leaves of Arabidopsis develop from a shoot apical meristem grow along three (proximal-distal, adaxial-abaxial, and medial-lateral) axes and form a flat symmetric architecture. ASYMMETRIC LEAVES2 (AS2), a key regulator for leaf adaxial-abaxial partitioning, encodes a plant-specific nuclear protein and directly represses the abaxial-determining gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). How AS2 could act as a critical regulator, however, has yet to be demonstrated, although it might play an epigenetic role. Here, we summarize the current understandings of the genetic, molecular, and cellular functions of AS2. A characteristic genetic feature of AS2 is the presence of a number of (about 60) modifier genes, mutations of which enhance the leaf abnormalities of as2. Although genes for proteins that are involved in diverse cellular processes are known as modifiers, it has recently become clear that many modifier proteins, such as NUCLEOLIN1 (NUC1) and RNA HELICASE10 (RH10), are localized in the nucleolus. Some modifiers including ribosomal proteins are also members of the small subunit processome (SSUP). In addition, AS2 forms perinucleolar bodies partially colocalizing with chromocenters that include the condensed inactive 45S ribosomal RNA genes. AS2 participates in maintaining CpG methylation in specific exons of ETT/ARF3. NUC1 and RH10 genes are also involved in maintaining the CpG methylation levels and repressing ETT/ARF3 transcript levels. AS2 and nucleolus-localizing modifiers might cooperatively repress ETT/ARF3 to develop symmetric flat leaves. These results raise the possibility of a nucleolus-related epigenetic repression system operating for developmental genes unique to plants and predict that AS2 could be a molecule with novel functions that cannot be explained by the conventional concept of transcription factors.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , RNA Helicases DEAD-box/genética , Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Polaridade Celular/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas Nucleares/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Nucleolina
5.
Plant Cell Physiol ; 61(3): 445-456, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32030404

RESUMO

Plant growth and development relies on the accurate positioning of the cell plate between dividing cells during cytokinesis. The cell plate is synthetized by a specialized structure called the phragmoplast, which contains bipolar microtubules that polymerize to form a framework with the plus ends at or near the division site. This allows the transport of Golgi-derived vesicles toward the plus ends to form and expand the cell plate. Actin filaments play important roles in cell plate expansion and guidance in plant cytokinesis at the late phase, but whether they are involved at the early phase is unknown. To investigate this further, we disrupted the actin filaments in cell cycle-synchronized tobacco BY-2 cells with latrunculin B (LatB), an actin polymerization inhibitor. We observed the cells under a transmission electron microscope or a spinning-disk confocal laser scanning microscope. We found that disruption of actin filaments by LatB caused the membrane vesicles at the equatorial plane of the cell plate to be dispersed rather than form clusters as they did in the untreated cells. The midzone constriction of phragmoplast microtubules also was perturbed in LatB-treated cells. The live cell imaging and kymograph analysis showed that disruption of actin filaments also changed the accumulation timing of NACK1 kinesin, which plays a crucial role in cell plate expansion. This suggests that there are two functionally different types of microtubules in the phragmoplast. Together, our results show that actin filaments regulate phragmoplast microtubules at the initial phase of plant cytokinesis.


Assuntos
Citoesqueleto de Actina/metabolismo , Citocinese/fisiologia , Citoplasma/metabolismo , Microtúbulos/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Divisão Celular , Cinesinas/metabolismo , Desenvolvimento Vegetal/fisiologia , Tiazolidinas/metabolismo , Nicotiana/metabolismo
6.
Plant J ; 101(5): 1118-1134, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31639235

RESUMO

In Arabidopsis, the ASYMMETRIC LEAVES2 (AS2) protein plays a key role in the formation of flat symmetric leaves via direct repression of the abaxial gene ETT/ARF3. AS2 encodes a plant-specific nuclear protein that contains the AS2/LOB domain, which includes a zinc-finger (ZF) motif that is conserved in the AS2/LOB family. We have shown that AS2 binds to the coding DNA of ETT/ARF3, which requires the ZF motif. AS2 is co-localized with AS1 in perinucleolar bodies (AS2 bodies). To identify the amino acid signals in AS2 required for formation of AS2 bodies and function(s) in leaf formation, we constructed recombinant DNAs that encoded mutant AS2 proteins fused to yellow fluorescent protein. We examined the subcellular localization of these proteins in cells of cotyledons and leaf primordia of transgenic plants and cultured cells. The amino acid signals essential for formation of AS2 bodies were located within and adjacent to the ZF motif. Mutant AS2 that failed to form AS2 bodies also failed to rescue the as2-1 mutation. Our results suggest the importance of the formation of AS2 bodies and the nature of interactions of AS2 with its target DNA and nucleolar factors including NUCLEOLIN1. The partial overlap of AS2 bodies with perinucleolar chromocenters with condensed ribosomal RNA genes implies a correlation between AS2 bodies and the chromatin state. Patterns of AS2 bodies in cells during interphase and mitosis in leaf primordia were distinct from those in cultured cells, suggesting that the formation and distribution of AS2 bodies are developmentally modulated in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Mutação , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Domínios Proteicos , Fatores de Transcrição/genética , Dedos de Zinco
7.
Plant Biotechnol (Tokyo) ; 36(4): 213-222, 2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31983875

RESUMO

DNA methylation in higher organisms has become an expanding field of study as it often involves the regulation of gene expression. Although Whole Genome Bisulfite Sequencing (WG-BS) based on next-generation sequencing (NGS) is the most versatile method, this is a costly technique that lacks in-depth analytic power. There are no conventional methods based on NGS that enable researchers to easily compare the level of DNA methylation from the practical number of samples handled in the laboratory. Although the targeted BS method based on Sanger sequencing is generally used in this case, it lacks in-depth analytic power. Therefore, we propose a new method that combines the high throughput analytic power of NGS and bioinformatics with the specificity and focus offered by PCR-amplification-based bisulfite sequencing methods. We use in silico size sieving of DNA-fragments and primer matchings instead of whole-fragment alignment in our bioinformatics analyses, and named our method SIMON (Simple Inference for Methylome based On NGS). The results of our targeted BS method based on NGS (SIMON method) show that small variations in DNA methylation patterns can be precisely and efficiently measured at a single nucleotide resolution. SIMON method combines pre-existing techniques to provide a cost-effective technique for in-depth studies that focus on pre-identified loci. It offers significant improvements with regard to workflow and the quality of the acquired DNA methylation information. Because of the high accuracy of the analysis, small variations of DNA methylation levels can be precisely determined even with large numbers of samples and loci.

9.
Plant Cell Physiol ; 59(7): 1385-1397, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29415182

RESUMO

Arabidopsis ASYMMETRIC LEAVES2 (AS2) plays a critical role in leaf adaxial-abaxial partitioning by repressing expression of the abaxial-determining gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). We previously reported that six CpG dinucleotides in its exon 6 are thoroughly methylated by METHYLTRASFERASE1, that CpG methylation levels are inversely correlated with ETT/ARF3 transcript levels and that methylation levels at three out of the six CpG dinucleotides are decreased in as2-1. All these imply that AS2 is involved in epigenetic repression of ETT/ARF3 by gene body DNA methylation. The mechanism of the epigenetic repression by AS2, however, is unknown. Here, we tested mutations of NUCLEOLIN1 (NUC1) and RNA HELICASE10 (RH10) encoding nucleolus-localized proteins for the methylation in exon 6 as these mutations enhance the level of ETT/ARF3 transcripts in as2-1. Methylation levels at three specific CpGs were decreased in rh10-1, and two of those three overlapped with those in as2-1. Methylation levels at two specific CpGs were decreased in nuc1-1, and one of those three overlapped with that in as2-1. No site was affected by both rh10-1 and nuc1-1. One specific CpG was unaffected by these mutations. These results imply that the way in which RH10, NUC1 and AS2 are involved in maintaining methylation at five CpGs in exon 6 might be through at least several independent pathways, which might interact with each other. Furthermore, we found that AS2 binds specifically the sequence containing CpGs in exon 1 of ETT/ARF3, and that the binding requires the zinc-finger-like motif in AS2 that is structurally similar to the zinc finger-CxxC domain in vertebrate DNA methyltransferase1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , RNA Helicases DEAD-box/metabolismo , Metilação de DNA , Folhas de Planta/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ilhas de CpG , Citosina/metabolismo , RNA Helicases DEAD-box/genética , Proteínas de Ligação a DNA/metabolismo , Éxons , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/metabolismo , Folhas de Planta/genética , Domínios Proteicos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética
10.
Plant Biotechnol (Tokyo) ; 35(1): 39-49, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31275036

RESUMO

Balanced development of adaxial and abaxial domains in leaf primordia is critical for the formation of flat symmetric leaf lamina. Arabidopsis ASYMMETRIC LEAVES1 (AS1) and AS2 proteins form a complex (AS1-AS2), which acts as key regulators for the adaxial development by the direct repression of expression of the abaxial gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). Many modifier mutations have been identified, which enhance the defect of as1 and as2 mutations to generate abaxialized filamentous leaves without adaxial traits, suggesting that the development of the adaxial domain is achieved by cooperative repression by AS1-AS2 and the wild-type proteins corresponding to the modifiers. Mutations of several genes for DNA replication-related chromatin remodeling factors such as Chromatin Assembly Factor-1 (CAF-1) have been also identified as modifiers. It is still unknown, however, whether mutations in genes involved in DNA replication themselves might act as modifiers. Here we report that as1 and as2 mutants grown in the presence of hydroxyurea, a known inhibitor of DNA replication, form abaxialized filamentous leaves in a concentration-dependent manner. We further show that a mutation of the INCURVATA2 (ICU2) gene, which encodes the putative catalytic subunit of DNA polymerase α, and a mutation of the Replication Factor C Subunit3 (RFC3) gene, which encodes a protein used in replication as a clamp loader, act as modifiers. In addition, as2-1 icu2-1 double mutants showed increased mRNA levels of the genes for leaf abaxialization. These results suggest a tight link between DNA replication and the function of AS1-AS2 in the development of flat leaves.

11.
Plant Cell ; 29(10): 2644-2660, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28899981

RESUMO

Ribosome-related mutants in Arabidopsis thaliana share several notable characteristics regarding growth and development, which implies the existence of a common pathway that responds to disorders in ribosome biogenesis. As a first step to explore this pathway genetically, we screened a mutagenized population of root initiation defective2 (rid2), a temperature-sensitive mutant that is impaired in pre-rRNA processing, and isolated suppressor of root initiation defective two1 (sriw1), a suppressor mutant in which the defects of cell proliferation observed in rid2 at the restrictive temperature was markedly rescued. sriw1 was identified as a missense mutation of the NAC transcription factor gene ANAC082 The sriw1 mutation greatly alleviated the developmental abnormalities of rid2 and four other tested ribosome-related mutants, including rid3 However, the impaired pre-rRNA processing in rid2 and rid3 was not relieved by sriw1 Expression of ANAC082 was localized to regions where phenotypic effects of ribosome-related mutations are readily evident and was elevated in rid2 and rid3 compared with the wild type. These findings suggest that ANAC082 acts downstream of perturbation of biogenesis of the ribosome and may mediate a set of stress responses leading to developmental alterations and cell proliferation defects.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , Ribossomos/metabolismo
12.
New Phytol ; 215(1): 187-201, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28370001

RESUMO

The evolutionarily conserved MAP65 family proteins bundle anti-parallel microtubules (MTs). In Arabidopsis thaliana, mutations in the MAP65-3 gene lead to serious defects in MT organization in the phragmoplast and cause failures in cytokinesis. However, the functions of other ArabidopsisMAP65 isoforms are largely unknown. MAP65 functions were analyzed based on genetic interactions among different map65 mutations. Live-cell imaging and immunolocalization experiments revealed dynamic activities of two closely related MAP65 proteins in dividing cells. The map65-4 mutation caused synthetic lethality with map65-3 although map65-4 alone did not cause a noticeable phenotype. Furthermore, the introduction of an extra copy of the MAP65-4 gene significantly suppressed defects in cytokinesis and seedling growth caused by map65-3 because of restoring MT engagement in the spindle midzone. During mitosis, MAP65-4 first appeared at the preprophase band and persisted at the cortical division site afterwards. It was also concentrated on MTs in the spindle midzone and the phragmoplast. In the absence of MAP65-3, MAP65-4 exhibited greatly enhanced localization in the midzone of developing phragmoplast. Therefore, we have uncovered redundant but differential contributions of MAP65-3 and MAP65-4 to engaging and bundling anti-parallel MTs in the phragmoplast and disclosed a novel action of MAP65-4 at the cortical cell division site.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Divisão Celular , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência Conservada , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Mutação
13.
Plant Cell Physiol ; 57(8): 1744-55, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27335345

RESUMO

The phosphorylation of proteins by protein kinases controls many cellular and physiological processes, which include intracellular signal transduction. However, the underlying molecular mechanisms of such controls and numerous substrates of protein kinases remain to be characterized. The mitogen-activated protein kinase (MAPK) cascade is of particular importance in a variety of extracellular and intracellular signaling processes. In plant cells, the progression of cytokinesis is an excellent example of an intracellular phenomenon that requires the MAPK cascade. However, the way in which MAPKs control downstream processes during cytokinesis in plant cells remains to be fully determined. We show here that comparisons, by two-dimensional difference gel electrophoresis, of phosphorylated proteins from wild-type Arabidopsis thaliana and mutant plants defective in a MAPK cascade allow identification of substrates of a specific MAPK. Using this method, we identified the PATELLIN2 (PATL2) protein, which has a SEC14 domain, as a substrate of MPK4 MAP kinase. PATL2 was concentrated at the cell division plane, as is MPK4, and had binding affinity for phosphoinositides. This binding affinity was altered after phosphorylation of PATL2 by MPK4, suggesting a role for the MAPK cascade in the formation of cell plates via regeneration of membranes during cytokinesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/genética , Fosfatidilinositóis/metabolismo , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citocinese , Genes Reporter , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Domínios Proteicos , Proteômica
14.
Biol Open ; 5(7): 942-54, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27334696

RESUMO

Although the DEAD-box RNA helicase family is ubiquitous in eukaryotes, its developmental role remains unelucidated. Here, we report that cooperative action between the Arabidopsis nucleolar protein RH10, an ortholog of human DEAD-box RNA helicase DDX47, and the epigenetic repressor complex of ASYMMETRIC-LEAVES1 (AS1) and AS2 (AS1-AS2) is critical to repress abaxial (ventral) genes ETT/ARF3 and ARF4, which leads to adaxial (dorsal) development in leaf primordia at shoot apices. Double mutations of rh10-1 and as2 (or as1) synergistically up-regulated the abaxial genes, which generated abaxialized filamentous leaves with loss of the adaxial domain. DDX47 is part of the small subunit processome (SSUP) that mediates rRNA biogenesis. In rh10-1 we found various defects in SSUP-related events, such as: accumulation of 35S/33S rRNA precursors; reduction in the 18S/25S ratio; and nucleolar hypertrophy. Double mutants of as2 with mutations of genes that encode other candidate SSUP-related components such as nucleolin and putative rRNA methyltransferase exhibited similar synergistic defects caused by up-regulation of ETT/ARF3 and ARF4 These results suggest a tight link between putative SSUP and AS1-AS2 in repression of the abaxial-determining genes for cell fate decisions for adaxial development.

16.
Wiley Interdiscip Rev Dev Biol ; 4(6): 655-71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26108442

RESUMO

Leaf primordia are born around meristem-containing stem cells at shoot apices, grow along three axes (proximal-distal, adaxial-abaxial, medial-lateral), and develop into flat symmetric leaves with adaxial-abaxial polarity. Axis development and polarity specification of Arabidopsis leaves require a network of genes for transcription factor-like proteins and small RNAs. Here, we summarize present understandings of adaxial-specific genes, ASYMMETRIC LEAVES1 (AS1) and AS2. Their complex (AS1-AS2) functions in the regulation of the proximal-distal leaf length by directly repressing class 1 KNOX homeobox genes (BP, KNAT2) that are expressed in the meristem periphery below leaf primordia. Adaxial-abaxial polarity specification involves antagonistic interaction of adaxial and abaxial genes including AS1 and AS2 for the development of two respective domains. AS1-AS2 directly represses the abaxial gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3) and indirectly represses ETT/ARF3 and ARF4 through tasiR-ARF. Modifier mutations have been identified that abolish adaxialization and enhance the defect in the proximal-distal patterning in as1 and as2. AS1-AS2 and its modifiers synergistically repress both ARFs and class 1 KNOXs. Repression of ARFs is critical for establishing adaxial-abaxial polarity. On the other hand, abaxial factors KANADI1 (KAN1) and KAN2 directly repress AS2 expression. These data delineate a molecular framework for antagonistic gene interactions among adaxial factors, AS1, AS2, and their modifiers, and the abaxial factors ARFs as key regulators in the establishment of adaxial-abaxial polarity. Possible AS1-AS2 epigenetic repression and activities downstream of ARFs are discussed.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Padronização Corporal/genética , Folhas de Planta/embriologia , Folhas de Planta/genética , Regulação da Expressão Gênica de Plantas/genética , Mutação/genética , Fatores de Transcrição/genética
17.
Plant Signal Behav ; 10(3): e990817, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25806785

RESUMO

Plant cells are surrounded by rigid cell walls, and hence, their division is associated with a plant-specific mode of cytokinesis in which the cell plate, a new cell wall, is generated and separates 2 daughter nuclei. The successful execution of cytokinesis requires the timely activation of multiple regulatory pathways, which include the AtNACK1/HINKEL kinesin-induced MAPK cascade and MYB3R1/4-mediated transcriptional activation of G2/M-specific genes. However, it remains unclear whether and how these pathways are functionally interconnected to each other. By analyzing enhancer mutations of myb3r4, here we found a close genetic interaction between the 2 pathways; a mutation in ANP3, which encodes MAPKKK (acting downstream of AtNACK1/HINKEL), strongly enhanced the defective cytokinesis observed in the myb3r4 mutant. This interaction may not be due to the direct activation of MYB3R1/4 by the MAPK cascade; rather, possibly to the downstream targets of these 2 signaling pathways, acting in close proximity. Our results showed that MYB3R1/4 may positively affect cytokinesis via multiple pathways, one of which may act independently from the KNOLLE-dependent pathway defined previously, and affect the downstream events that may also be under the control of the AtNACK1/HINKEL-mediated MAPK cascade.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Citocinese , Sistema de Sinalização das MAP Quinases/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Parede Celular , Fase G2 , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Cinesinas/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Células Vegetais , Transativadores/metabolismo
18.
J Plant Res ; 128(3): 423-35, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25694001

RESUMO

Reprogramming of plant cells is an event characterized by dedifferentiation, reacquisition of totipotency, and enhanced cell proliferation, and is typically observed during formation of the callus, which is dependent on plant hormones. The callus-like cell mass, called a crown gall tumor, is induced at the sites of infection by Agrobacterium species through the expression of hormone-synthesizing genes encoded in the T-DNA region, which probably involves a similar reprogramming process. One of the T-DNA genes, 6b, can also by itself induce reprogramming of differentiated cells to generate tumors and is therefore recognized as an oncogene acting in plant cells. The 6b genes belong to a group of Agrobacterium T-DNA genes, which include rolB, rolC, and orf13. These genes encode proteins with weakly conserved sequences and may be derived from a common evolutionary origin. Most of these members can modify plant growth and morphogenesis in various ways, in most cases without affecting the levels of plant hormones. Recent studies have suggested that the molecular function of 6b might be to modify the patterns of transcription in the host nuclei, particularly by directly targeting the host transcription factors or by changing the epigenetic status of the host chromatin through intrinsic histone chaperone activity. In light of the recent findings on zygotic resetting of nucleosomal histone variants in Arabidopsis thaliana, one attractive idea is that acquisition of totipotency might be facilitated by global changes of epigenetic status, which might be induced by replacement of histone variants in the zygote after fertilization and in differentiated cells upon stimulation by plant hormones as well as by expression of the 6b gene.


Assuntos
Agrobacterium/genética , Arabidopsis/fisiologia , Proteínas de Bactérias/metabolismo , Desenvolvimento Vegetal/fisiologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Regulação da Expressão Gênica de Plantas , Células Vegetais/fisiologia , Reguladores de Crescimento de Plantas/metabolismo
19.
Sci Rep ; 5: 8341, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25661797

RESUMO

Appropriate timing of flowering is critical for reproductive success and necessarily involves complex genetic regulatory networks. A mobile floral signal, called florigen, is a key molecule in this process, and flowering locus T (FT) protein is its major component in Arabidopsis. FT is produced in leaves, but promotes the floral transition in the shoot apex, where it forms a complex with a basic region/leucine-zipper (bZIP) transcription factor, FD. Formation of the florigen complex depends on the supposed phosphorylation of FD; hitherto, however, the responsible protein kinase(s) have not been identified. In this study, we prepared protein extracts from shoot apices of plants around the floral transition, and detected a protein kinase activity that phosphorylates a threonine residue at position 282 of FD (FD T282), which is a crucial residue for the complex formation with FT via 14-3-3. The kinase activity was calcium-dependent. Subsequent biochemical, cellular, and genetic analyses showed that three calcium-dependent protein kinases (CDPKs) efficiently phosphorylate FD T282. Two of them (CPK6 and CPK33) are expressed in shoot apical meristem and directly interact with FD, suggesting they have redundant functions. The loss of function of one CDPK (CPK33) resulted in a weak but significant late-flowering phenotype.


Assuntos
Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/biossíntese , Flores/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Flores/genética , Meristema/genética , Meristema/metabolismo , Fosforilação/fisiologia , Brotos de Planta/genética , Brotos de Planta/metabolismo , Fatores de Transcrição/genética
20.
J Plant Res ; 128(2): 327-36, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25502072

RESUMO

Plant cytokinesis is achieved by formation of cell plates in the phragmoplast, a plant-specific cytokinetic apparatus, which consists of microtubules (MTs) and microfilaments. During cytokinesis, the cell plate is expanded centrifugally outward from the inside of cells in a process that is supported by dynamic turnover of MTs. M-phase-specific kinesin NACK1, which comprises the motor domain at the amino-terminal half to move on MT bundles and the stalk region in the carboxyl-terminal half, is a key player in the process of MT turnover. That is, the specific region in the stalk binds the MAP kinase kinase kinase to activate the whole MAP kinase cascade, which stimulates depolymerization of MTs for the MT turnover. The stalk is also responsible for recruiting the activated kinase cascade to the mid-zone of the phragmoplast, which corresponds to the cell-plate formation site. It should be crucial to uncover roles of the NACK1 kinesin stalk as well as the motor domain in the formation of cell plates in order to understand the mechanisms of cell plate formation. Using dissected Arabidopsis NACK1 (AtNACK1/HINKEL) molecules and AtNACK1-fused GFP, we showed that the C-terminal tail of the stalk in addition to the motor domain is critical for its proper localization to the site of cell plate formation in the phragmoplast, probably by affecting its motility activity.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Citocinese , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...