Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948242

RESUMO

Huntington's disease (HD) is one of at least nine polyglutamine diseases caused by a trinucleotide CAG repeat expansion, all of which lead to age-onset neurodegeneration. Mitochondrial dynamics and function are disrupted in HD and other polyglutamine diseases. While multiple studies have found beneficial effects from decreasing mitochondrial fragmentation in HD models by disrupting the mitochondrial fission protein DRP1, disrupting DRP1 can also have detrimental consequences in wild-type animals and HD models. In this work, we examine the effect of decreasing mitochondrial fragmentation in a neuronal C. elegans model of polyglutamine toxicity called Neur-67Q. We find that Neur-67Q worms exhibit mitochondrial fragmentation in GABAergic neurons and decreased mitochondrial function. Disruption of drp-1 eliminates differences in mitochondrial morphology and rescues deficits in both movement and longevity in Neur-67Q worms. In testing twenty-four RNA interference (RNAi) clones that decrease mitochondrial fragmentation, we identified eleven clones-each targeting a different gene-that increase movement and extend lifespan in Neur-67Q worms. Overall, we show that decreasing mitochondrial fragmentation may be an effective approach to treating polyglutamine diseases and we identify multiple novel genetic targets that circumvent the potential negative side effects of disrupting the primary mitochondrial fission gene drp-1.


Assuntos
Caenorhabditis elegans/metabolismo , Neurônios GABAérgicos/metabolismo , Doença de Huntington/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Humanos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Interferência de RNA
2.
Aging Dis ; 12(7): 1753-1772, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34631219

RESUMO

Huntington's disease (HD) is an adult-onset neurodegenerative disease caused by a trinucleotide CAG repeat expansion in the HTT gene. While the pathogenesis of HD is incompletely understood, mitochondrial dysfunction is thought to be a key contributor. In this work, we used C. elegans models to elucidate the role of mitochondrial dynamics in HD. We found that expression of a disease-length polyglutamine tract in body wall muscle, either with or without exon 1 of huntingtin, results in mitochondrial fragmentation and mitochondrial network disorganization. While mitochondria in young HD worms form elongated tubular networks as in wild-type worms, mitochondrial fragmentation occurs with age as expanded polyglutamine protein forms aggregates. To correct the deficit in mitochondrial morphology, we reduced levels of DRP-1, the GTPase responsible for mitochondrial fission. Surprisingly, we found that disrupting drp-1 can have detrimental effects, which are dependent on how much expression is decreased. To avoid potential negative side effects of disrupting drp-1, we examined whether decreasing mitochondrial fragmentation by targeting other genes could be beneficial. Through this approach, we identified multiple genetic targets that rescue movement deficits in worm models of HD. Three of these genetic targets, pgp-3, F25B5.6 and alh-12, increased movement in the HD worm model and restored mitochondrial morphology to wild-type morphology. This work demonstrates that disrupting the mitochondrial fission gene drp-1 can be detrimental in animal models of HD, but that decreasing mitochondrial fragmentation by targeting other genes can be protective. Overall, this study identifies novel therapeutic targets for HD aimed at improving mitochondrial health.

3.
Front Aging Neurosci ; 12: 524369, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192449

RESUMO

Huntington disease (HD) is a fatal, inherited neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene. While mutant HTT is present ubiquitously throughout life, HD onset typically occurs in mid-life. Oxidative damage accumulates in the aging brain and is a feature of HD. We sought to interrogate the roles and interaction of age and oxidative stress in HD using primary Hu97/18 mouse neurons, neurons differentiated from HD patient induced pluripotent stem cells (iPSCs), and the brains of HD mice. We find that primary neurons must be matured in culture for canonical stress responses to occur. Furthermore, when aging is accelerated in mature HD neurons, mutant HTT accumulates and sensitivity to oxidative stress is selectively enhanced. Furthermore, we observe HD-specific phenotypes in neurons and mouse brains that have undergone accelerated aging, including a selective increase in DNA damage. These findings suggest a role for aging in HD pathogenesis and an interaction between the biological age of HD neurons and sensitivity to exogenous stress.

4.
J Huntingtons Dis ; 9(2): 115-128, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32417788

RESUMO

Huntington's disease (HD) is a fatal, inherited neurodegenerative disorder caused by a mutation in the huntingtin gene (HTT). While mutant HTT is present ubiquitously throughout life, HD onset typically occurs in mid-life, suggesting that aging may play an active role in pathogenesis. Cellular aging is defined as the slow decline in stress resistance and accumulation of damage over time. While different cells and tissues can age at different rates, 9 hallmarks of aging have emerged to better define the cellular aging process. Strikingly, many of the hallmarks of aging are also hallmarks of HD pathology. Models of HD and HD patients possess markers of accelerated aging, and processes that decline during aging also decline at a more rapid rate in HD, further implicating the role of aging in HD pathogenesis. Furthermore, accelerating aging in HD mouse and patient-derived neurons unmasks HD-specific phenotypes, suggesting an active role for the aging process in the onset and progression of HD. Here, we review the overlap between the hallmarks of aging and HD and discuss how aging may contribute to pathogenesis in HD.


Assuntos
Senilidade Prematura , Envelhecimento , Senescência Celular , Doença de Huntington , Envelhecimento/genética , Envelhecimento/imunologia , Envelhecimento/metabolismo , Senilidade Prematura/genética , Senilidade Prematura/imunologia , Senilidade Prematura/metabolismo , Animais , Senescência Celular/genética , Senescência Celular/imunologia , Humanos , Doença de Huntington/genética , Doença de Huntington/imunologia , Doença de Huntington/metabolismo
5.
FASEB J ; 34(6): 8475-8492, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32385951

RESUMO

Mitochondria are dynamic organelles that can change shape and size depending on the needs of the cell through the processes of mitochondrial fission and fusion. In this work, we investigated the role of mitochondrial dynamics in organismal stress response. By using C. elegans as a genetic model, we could visualize mitochondrial morphology in a live organism with well-established stress assays and well-characterized stress response pathways. We found that disrupting mitochondrial fission (DRP1/drp-1) or fusion (OPA1/eat-3, MFN/fzo-1) genes caused alterations in mitochondrial morphology that impacted both mitochondrial function and physiologic rates. While both mitochondrial fission and mitochondrial fusion mutants showed increased sensitivity to osmotic stress and anoxia, surprisingly we found that the mitochondrial fusion mutants eat-3 and fzo-1 are more resistant to both heat stress and oxidative stress. In exploring the mechanism of increased stress resistance, we found that disruption of mitochondrial fusion genes resulted in the upregulation of multiple stress response pathways. Overall, this work demonstrates that disrupting mitochondrial dynamics can have opposite effects on resistance to different types of stress. Our results suggest that disruption of mitochondrial fusion activates multiple stress response pathways that enhance resistance to specific stresses.


Assuntos
Caenorhabditis elegans/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Estresse Oxidativo/fisiologia , Estresse Fisiológico/fisiologia , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas Mitocondriais/metabolismo , Organelas/metabolismo
6.
BMC Biol ; 16(1): 147, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30563508

RESUMO

BACKGROUND: The mitochondrial unfolded protein response (mitoUPR) is a stress response pathway activated by disruption of proteostasis in the mitochondria. This pathway has been proposed to influence lifespan, with studies suggesting that mitoUPR activation has complex effects on longevity. RESULTS: Here, we examined the contribution of the mitoUPR to the survival and lifespan of three long-lived mitochondrial mutants in Caenorhabditis elegans by modulating the levels of ATFS-1, the central transcription factor that mediates the mitoUPR. We found that clk-1, isp-1, and nuo-6 worms all exhibit an ATFS-1-dependent activation of the mitoUPR. While loss of atfs-1 during adulthood does not affect lifespan in any of these strains, absence of atfs-1 during development prevents clk-1 and isp-1 worms from reaching adulthood and reduces the lifespan of nuo-6 mutants. Examining the mechanism by which deletion of atfs-1 reverts nuo-6 lifespan to wild-type, we find that many of the transcriptional changes present in nuo-6 worms are mediated by ATFS-1. Genes exhibiting an ATFS-1-dependent upregulation in nuo-6 worms are enriched for transcripts that function in stress response and metabolism. Consistent, with this finding, loss of atfs-1 abolishes the enhanced stress resistance observed in nuo-6 mutants and prevents upregulation of multiple stress response pathways including the HIF-1-mediated hypoxia response, SKN-1-mediated oxidative stress response and DAF-16-mediated stress response. CONCLUSIONS: Our results suggest that in the long-lived mitochondrial mutant nuo-6 activation of the mitoUPR causes atfs-1-dependent changes in the expression of genes involved in stress response and metabolism, which contributes to the extended longevity observed in this mutant. This work demonstrates that the mitoUPR can modulate multiple stress response pathways and suggests that it is crucial for the development and lifespan of long-lived mitochondrial mutants.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Longevidade/genética , Mutação , Estresse Oxidativo/fisiologia , Fatores de Transcrição/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mitocôndrias , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas
7.
Sci Rep ; 7(1): 16441, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29180793

RESUMO

While the pathogenesis of Parkinson's disease (PD) is incompletely understood, mitochondrial dysfunction is thought to play a crucial role in disease pathogenesis. Here, we examined the relationship between mitochondrial function and dopamine neuron dysfunction and death using C. elegans mutants for three mitochondria-related genes implicated in monogenic PD (pdr-1/PRKN, pink-1/PINK1 and djr-1.1/DJ-1). We found that pdr-1 and pink-1 mutants exhibit deficits in dopamine-dependent behaviors, but no loss of dopamine neurons, while djr-1.1 mutants showed an increased sensitivity to oxidative stress. In examining mitochondrial morphology and function, we found that djr-1.1 mutants exhibit increased mitochondrial fragmentation leading to decreased rate of oxidative phosphorylation and ATP levels. pdr-1 and pink-1 mutants show an accumulation of dysfunctional mitochondria with age, which leads to activation of the mitochondrial unfolded protein response (mitoUPR). Preventing the upregulation of the mitoUPR with a deletion in atfs-1 results in decreased lifespan and dopamine neuronal loss in pdr-1 and pink-1 mutants but not in wild-type worms. Overall, our results suggest that mutations in pdr-1 and pink-1 cause the accumulation of dysfunctional mitochondria, which activates the mitoUPR to mitigate the detrimental effect of these mutations on dopamine neuron survival.


Assuntos
Caenorhabditis elegans/metabolismo , Neurônios Dopaminérgicos/patologia , Longevidade , Mitocôndrias/metabolismo , Doença de Parkinson/patologia , Resposta a Proteínas não Dobradas , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Longevidade/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mutação/genética , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Estresse Oxidativo/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
8.
Sci Transl Med ; 8(368): 368ra174, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27928028

RESUMO

Mitochondrial and autophagic dysfunction as well as neuroinflammation are involved in the pathophysiology of Parkinson's disease (PD). We hypothesized that targeting the mitochondrial pyruvate carrier (MPC), a key controller of cellular metabolism that influences mTOR (mammalian target of rapamycin) activation, might attenuate neurodegeneration of nigral dopaminergic neurons in animal models of PD. To test this, we used MSDC-0160, a compound that specifically targets MPC, to reduce its activity. MSDC-0160 protected against 1-methyl-4-phenylpyridinium (MPP+) insult in murine and cultured human midbrain dopamine neurons and in an α-synuclein-based Caenorhabditis elegans model. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, MSDC-0160 improved locomotor behavior, increased survival of nigral dopaminergic neurons, boosted striatal dopamine levels, and reduced neuroinflammation. Long-term targeting of MPC preserved motor function, rescued the nigrostriatal pathway, and reduced neuroinflammation in the slowly progressive Engrailed1 (En1+/-) genetic mouse model of PD. Targeting MPC in multiple models resulted in modulation of mitochondrial function and mTOR signaling, with normalization of autophagy and a reduction in glial cell activation. Our work demonstrates that changes in metabolic signaling resulting from targeting MPC were neuroprotective and anti-inflammatory in several PD models, suggesting that MPC may be a useful therapeutic target in PD.


Assuntos
Autofagia , Inflamação , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/imunologia , Doença de Parkinson/imunologia , Ácido Pirúvico/química , 1-Metil-4-fenilpiridínio/química , Animais , Comportamento Animal , Encéfalo/metabolismo , Caenorhabditis elegans , Modelos Animais de Doenças , Dopamina/química , Neurônios Dopaminérgicos/metabolismo , Heterozigoto , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Consumo de Oxigênio , Doença de Parkinson/metabolismo , Piridinas/química , Transdução de Sinais , Substância Negra/metabolismo , Tiazolidinedionas/química , alfa-Sinucleína/química
9.
Neurobiol Dis ; 96: 1-11, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27544481

RESUMO

Huntington's disease (HD) is an adult onset neurodegenerative disorder for which there is currently no cure. While HD patients and animal models of the disease exhibit increased oxidative damage, it is currently uncertain to what extent oxidative stress contributes to disease pathogenesis. In this work, we use a genetic approach to define the role of oxidative stress in HD. We find that a C. elegans model of HD expressing a disease-length polyglutamine tract in the body wall muscle is hypersensitive to oxidative stress and shows an upregulation of antioxidant defense genes, indicating that the HD worm model has increased levels of oxidative stress. To determine whether this increase in oxidative stress contributes to the development of polyglutamine-toxicity phenotypes in this HD model, we examined the effect of deleting individual superoxide dismutase (sod) genes in the HD worm model. As predicted, we found that deletion of sod genes in the HD worm model resulted in a clear increase in sensitivity to oxidative stress. However, we found that increasing oxidative stress in the HD worm model did not exacerbate deficits caused by polyglutamine toxicity. We confirmed these observations in two worm models expressing disease-length polyglutamine tracts in neurons. Furthermore, we found that treatment with antioxidants failed to rescue movement deficits or decrease aggregation in HD worm models. Combined, this suggests that the increase in oxidative stress in worm models of HD does not contribute to the phenotypic deficits observed in these worms, and provides a possible explanation for the failure of antioxidants in HD clinical trials.


Assuntos
Desenvolvimento Embrionário/genética , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Estresse Oxidativo/fisiologia , Peptídeos/genética , Regulação para Cima/genética , Análise de Variância , Animais , Animais Geneticamente Modificados , Antioxidantes/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Desenvolvimento Embrionário/efeitos dos fármacos , Glucose/farmacologia , Doença de Huntington/tratamento farmacológico , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Movimento/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/toxicidade , Interferência de RNA , RNA Mensageiro/metabolismo , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos
10.
PLoS Genet ; 11(2): e1004972, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25671321

RESUMO

Reactive oxygen species (ROS) are highly reactive, oxygen-containing molecules that can cause molecular damage within the cell. While the accumulation of ROS-mediated damage is widely believed to be one of the main causes of aging, ROS also act in signaling pathways. Recent work has demonstrated that increasing levels of superoxide, one form of ROS, through treatment with paraquat, results in increased lifespan. Interestingly, treatment with paraquat robustly increases the already long lifespan of the clk-1 mitochondrial mutant, but not other long-lived mitochondrial mutants such as isp-1 or nuo-6. To genetically dissect the subcellular compartment in which elevated ROS act to increase lifespan, we deleted individual superoxide dismutase (sod) genes in clk-1 mutants, which are sensitized to ROS. We find that only deletion of the primary mitochondrial sod gene, sod-2 results in increased lifespan in clk-1 worms. In contrast, deletion of either of the two cytoplasmic sod genes, sod-1 or sod-5, significantly decreases the lifespan of clk-1 worms. Further, we show that increasing mitochondrial superoxide levels through deletion of sod-2 or treatment with paraquat can still increase lifespan in clk-1;sod-1 double mutants, which live shorter than clk-1 worms. The fact that mitochondrial superoxide can increase lifespan in worms with a detrimental level of cytoplasmic superoxide demonstrates that ROS have a compartment specific effect on lifespan - elevated ROS in the mitochondria acts to increase lifespan, while elevated ROS in the cytoplasm decreases lifespan. This work also suggests that both ROS-dependent and ROS-independent mechanisms contribute to the longevity of clk-1 worms.


Assuntos
Envelhecimento/genética , Longevidade/genética , Mitocôndrias/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento/patologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/genética , Mitocôndrias/metabolismo , Transdução de Sinais , Superóxido Dismutase/genética , Superóxidos/metabolismo
11.
NPJ Parkinsons Dis ; 1: 15022, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28725688

RESUMO

Aging is the greatest risk factor for the development of Parkinson's disease (PD). However, the role of aging in the pathogenesis of PD is not known and it is currently uncertain why the symptoms take many decades to develop when inherited mutations that cause the disease can be present from birth. We hypothesize that there are specific changes that take place during the aging process that make cells susceptible to disease-causing mutations that are well-tolerated at younger ages. If so, then interventions that increase lifespan should be beneficial in the treatment of PD. To test this hypothesis, we used the powerful genetics of C. elegans, as this worm has been used extensively in aging research. We crossed transgenic worm models of PD expressing either human mutant α-synuclein (A53T) or LRRK2 (G2019S) with the long-lived insulin-IGF1 receptor mutant, daf-2. The daf-2 mutation increased the lifespan of both PD mutants. The increase in lifespan resulting from the daf-2 mutation rescued the degeneration of dopamine neurons in both worm models of PD and importantly rescued deficits in dopamine-dependent behaviors including basal slowing, ethanol avoidance, and area-restricted searching. Increasing lifespan through daf-2 mutation also delayed the formation of small aggregates in a worm model of PD expressing α-synuclein in the body wall muscle and rescued deficits in resistance to different stresses that were present in the PD mutant worms. Overall, this work suggests that slowing down the aging process may provide an effective treatment for PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...